6,463 research outputs found

    Measuring Electric Fields From Surface Contaminants with Neutral Atoms

    Get PDF
    In this paper we demonstrate a technique of utilizing magnetically trapped neutral Rb-87 atoms to measure the magnitude and direction of stray electric fields emanating from surface contaminants. We apply an alternating external electric field that adds to (or subtracts from) the stray field in such a way as to resonantly drive the trapped atoms into a mechanical dipole oscillation. The growth rate of the oscillation's amplitude provides information about the magnitude and sign of the stray field gradient. Using this measurement technique, we are able to reconstruct the vector electric field produced by surface contaminants. In addition, we can accurately measure the electric fields generated from adsorbed atoms purposely placed onto the surface and account for their systematic effects, which can plague a precision surface-force measurement. We show that baking the substrate can reduce the electric fields emanating from adsorbate, and that the mechanism for reduction is likely surface diffusion, not desorption.Comment: 7 pages, 6 figures, published in Physical Review

    Study of fault-tolerant software technology

    Get PDF
    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance

    Measurement of the Temperature Dependence of the Casimir-Polder Force

    Get PDF
    We report on the first measurement of a temperature dependence of the Casimir-Polder force. This measurement was obtained by positioning a nearly pure 87-Rb Bose-Einstein condensate a few microns from a dielectric substrate and exciting its dipole oscillation. Changes in the collective oscillation frequency of the magnetically trapped atoms result from spatial variations in the surface-atom force. In our experiment, the dielectric substrate is heated up to 605 K, while the surrounding environment is kept near room temperature (310 K). The effect of the Casimir-Polder force is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature substrate, showing a clear temperature dependence in agreement with theory.Comment: 4 pages, 4 figures, published in Physical Review Letter

    Nuclear energy density optimization: Shell structure

    Full text link
    Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.Comment: 18 pages, 13 figures, 12 tables; resubmitted for publication to Phys. Rev. C after second review by refere

    UNBODY: A Poetry Escape Room in Augmented Reality

    Get PDF
    The integration of augmented reality (AR) technology into personal computing is happening fast, and augmented workplaces for professionals in areas such as Industry 4.0 or digital health can reasonably be expected to form liminal zones that push the boundary of what currently possible. The application potential in the creative industries, however, is vast and can target broad audiences, so with UNBODY, we set out to push boundaries of a different kind and depart from the graphic-centric worlds of AR to explore textual and aural dimensions of an extended reality, in which words haunt and re-create our physical selves. UNBODY is an AR installation for smart glasses that embeds poetry in the user’s surroundings. The augmented experience turns reality into a medium where holographic texts and film clips spill from dayglow billboards and totems. In this paper, we develop a blueprint for an AR escape room dedicated to the spoken and written word, with its open source code facilitating uptake by others into existing or new AR escape rooms. We outline the user-centered process of designing, building, and evaluating UNBODY. More specifically, we deployed a system usability scale (SUS) and a spatial interaction evaluation (SPINE) in order to validate its wider applicability. In this paper, we also describe the composition and concept of the experience, identifying several components (trigger posters, posters with video overlay, word dropper totem, floating object gallery, and a user trail visualization) as part of our first version before evaluation. UNBODY provides a sense of situational awareness and immersivity from inside an escape room. The recorded average mean for the SUS was 59.7, slightly under the recommended 68 average but still above ‘OK’ in the zone of low marginal acceptable. The findings for the SPINE were moderately positive, with the highest scores for output modalities and navigation support. This indicated that the proposed components and escape room concept work. Based on these results, we improved the experience, adding, among others, an interactive word composer component. We conclude that a poetry escape room is possible, outline our co-creation process, and deliver an open source technical framework as a blueprint for adding enhanced support for the spoken and written word to existing or coming AR escape room experiences. In an outlook, we discuss additional insight on timing, alignment, and the right level of personalization

    From spin to anyon notation: The XXZ Heisenberg model as a D3D_{3} (or su(2)4su(2)_{4}) anyon chain

    Full text link
    We discuss a relationship between certain one-dimensional quantum spin chains and anyon chains. In particular we show how the XXZ Heisenberg chain is realised as a D3D_{3} (alternately su(2)4su(2)_{4}) anyon model. We find the difference between the models lie primarily in choice of boundary condition.Comment: 13 page

    Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a cluster - FAST - SuperDARN - sondrestrom conjunction under a southwest

    Get PDF
    Particle and magnetic field observations during a magnetic conjunction Cluster 1-FAST-Søndrestrøm within the field of view of SuperDARN radars on 21 January 2001 allow us to draw a detailed, comprehensive and self-consistent picture at three heights of signatures associated with transient reconnection under a steady south-westerly IMF (clock angle ≈130◦). Cluster 1 was outbound through the high altitude (∼12RE ) exterior northern cusp tailward of the bifurcation line (geomagnetic Bx>0) when a solar wind dynamic pressure release shifted the spacecraft into a boundary layer downstream of the cusp. The centerpiece of the investigation is a series of flow bursts observed there by the spacecraft, which were accompanied by strong field pertur- bations and tailward flow deflections. Analysis shows these to be Alfven waves. We interpret these flow events as being due to a sequence of reconnected flux tubes, with field-aligned currents in the associated Alfven waves carrying stresses to the underlying ionosphere, a view strengthened by the other observations. At the magnetic footprint of the region of Cluster flow bursts, FAST observed an ion energy- latitude disperison of the stepped cusp type, with individual cusp ion steps corresponding to individual flow bursts. Simultaneously, the SuperDARN Stokkseyri radar observed very strong poleward-moving radar auroral forms (PMRAFs) which were conjugate to the flow bursts at Cluster. FAST was traversing these PMRAFs when it observed the cusp ion steps. The Søndrestrøm radar observed pulsed ionospheric flows (PIFs) just poleward of the convection reversal boundary. As at Cluster, the flow was eastward (tailward), implying a coherent eastward (tailward) motion of the hypothesized open flux tubes. The joint Søndrestrøm and FAST observations indicate that the open/closed field line boundary was equatorward of the convection reversal boundary by ∼2 deg. The unprecedented accuracy of the conjunction argues strongly for the validity of the interpretation of the various signatures as resulting from transient reconnection. In particular, the cusp ion steps arise on this pass from this origin, in consonance with the original pulsating cusp model. The observations point to the need of extending current ideas on the response of the ionosphere to transient reconnection. Specifically, it argues in favor of re-establishing the high-latitude boundary layer downstream of the cusp as an active site of momentum transfer
    corecore