309 research outputs found

    Computation of periodic solution bifurcations in ODEs using bordered systems

    Get PDF
    We consider numerical methods for the computation and continuation of the three generic secondary periodic solution bifurcations in autonomous ODEs, namely the fold, the period-doubling (or flip) bifurcation, and the torus (or Neimark–Sacker) bifurcation. In the fold and flip cases we append one scalar equation to the standard periodic BVP that defines the periodic solution; in the torus case four scalar equations are appended. Evaluation of these scalar equations and their derivatives requires the solution of linear BVPs, whose sparsity structure (after discretization) is identical to that of the linearization of the periodic BVP. Therefore the calculations can be done using existing numerical linear algebra techniques, such as those implemented in the software AUTO and COLSYS

    Network Inoculation: Heteroclinics and phase transitions in an epidemic model

    Get PDF
    In epidemiological modelling, dynamics on networks, and in particular adaptive and heterogeneous networks have recently received much interest. Here we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description one of these corresponds to a local bifurcation whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation. In the respective parameter region exposure of the system to a pathogen will lead to an outbreak that collapses, but leaves the network in a configuration where the disease cannot reinvade, despite every agent returning to the susceptible class. We argue that this behaviour and the associated phase transitions can be expected to occur in a wide class of models of sufficient complexity.Comment: 26 pages, 11 figure

    Generation of finite wave trains in excitable media

    Full text link
    Spatiotemporal control of excitable media is of paramount importance in the development of new applications, ranging from biology to physics. To this end we identify and describe a qualitative property of excitable media that enables us to generate a sequence of traveling pulses of any desired length, using a one-time initial stimulus. The wave trains are produced by a transient pacemaker generated by a one-time suitably tailored spatially localized finite amplitude stimulus, and belong to a family of fast pulse trains. A second family, of slow pulse trains, is also present. The latter are created through a clumping instability of a traveling wave state (in an excitable regime) and are inaccessible to single localized stimuli of the type we use. The results indicate that the presence of a large multiplicity of stable, accessible, multi-pulse states is a general property of simple models of excitable media.Comment: 6 pages, 6 figure

    Continuation of connecting orbits in 3D-ODEs: (I) Point-to-cycle connections

    Full text link
    We propose new methods for the numerical continuation of point-to-cycle connecting orbits in 3-dimensional autonomous ODE's using projection boundary conditions. In our approach, the projection boundary conditions near the cycle are formulated using an eigenfunction of the associated adjoint variational equation, avoiding costly and numerically unstable computations of the monodromy matrix. The equations for the eigenfunction are included in the defining boundary-value problem, allowing a straightforward implementation in AUTO, in which only the standard features of the software are employed. Homotopy methods to find connecting orbits are discussed in general and illustrated with several examples, including the Lorenz equations. Complete AUTO demos, which can be easily adapted to any autonomous 3-dimensional ODE system, are freely available.Comment: 18 pages, 10 figure

    Dynamical Model for Chemically Driven Running Droplets

    Full text link
    We propose coupled evolution equations for the thickness of a liquid film and the density of an adsorbate layer on a partially wetting solid substrate. Therein, running droplets are studied assuming a chemical reaction underneath the droplets that induces a wettability gradient on the substrate and provides the driving force for droplet motion. Two different regimes for moving droplets -- reaction-limited and saturated regime -- are described. They correspond to increasing and decreasing velocities with increasing reaction rates and droplet sizes, respectively. The existence of the two regimes offers a natural explanation of prior experimental observations.Comment: 4 pages, 5 figure

    Oscillation threshold of a clarinet model: a numerical continuation approach

    Full text link
    This paper focuses on the oscillation threshold of single reed instruments. Several characteristics such as blowing pressure at threshold, regime selection, and playing frequency are known to change radically when taking into account the reed dynamics and the flow induced by the reed motion. Previous works have shown interesting tendencies, using analytical expressions with simplified models. In the present study, a more elaborated physical model is considered. The influence of several parameters, depending on the reed properties, the design of the instrument or the control operated by the player, are studied. Previous results on the influence of the reed resonance frequency are confirmed. New results concerning the simultaneous influence of two model parameters on oscillation threshold, regime selection and playing frequency are presented and discussed. The authors use a numerical continuation approach. Numerical continuation consists in following a given solution of a set of equations when a parameter varies. Considering the instrument as a dynamical system, the oscillation threshold problem is formulated as a path following of Hopf bifurcations, generalizing the usual approach of the characteristic equation, as used in previous works. The proposed numerical approach proves to be useful for the study of musical instruments. It is complementary to analytical analysis and direct time-domain or frequency-domain simulations since it allows to derive information that is hardly reachable through simulation, without the approximations needed for analytical approach

    Decomposition driven interface evolution for layers of binary mixtures: I. Model derivation and stratified base states

    Full text link
    A dynamical model is proposed to describe the coupled decomposition and profile evolution of a free surface film of a binary mixture. An example is a thin film of a polymer blend on a solid substrate undergoing simultaneous phase separation and dewetting. The model is based on model-H describing the coupled transport of the mass of one component (convective Cahn-Hilliard equation) and momentum (Navier-Stokes-Korteweg equations) supplemented by appropriate boundary conditions at the solid substrate and the free surface. General transport equations are derived using phenomenological non-equilibrium thermodynamics for a general non-isothermal setting taking into account Soret and Dufour effects and interfacial viscosity for the internal diffuse interface between the two components. Focusing on an isothermal setting the resulting model is compared to literature results and its base states corresponding to homogeneous or vertically stratified flat layers are analysed.Comment: Submitted to Physics of Fluid

    Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder

    Get PDF
    We discuss the behavior of partially wetting liquids on a rotating cylinder using a model that takes into account the effects of gravity, viscosity, rotation, surface tension and wettability. Such a system can be considered as a prototype for many other systems where the interplay of spatial heterogeneity and a lateral driving force in the proximity of a first- or second-order phase transition results in intricate behavior. So does a partially wetting drop on a rotating cylinder undergo a depinning transition as the rotation speed is increased, whereas for ideally wetting liquids the behavior \bfuwe{only changes quantitatively. We analyze the bifurcations that occur when the rotation speed is increased for several values of the equilibrium contact angle of the partially wetting liquids. This allows us to discuss how the entire bifurcation structure and the flow behavior it encodes changes with changing wettability. We employ various numerical continuation techniques that allow us to track stable/unstable steady and time-periodic film and drop thickness profiles. We support our findings by time-dependent numerical simulations and asymptotic analyses of steady and time-periodic profiles for large rotation numbers

    Getting DNA twist rigidity from single molecule experiments

    Get PDF
    We use an elastic rod model with contact to study the extension versus rotation diagrams of single supercoiled DNA molecules. We reproduce quantitatively the supercoiling response of overtwisted DNA and, using experimental data, we get an estimation of the effective supercoiling radius and of the twist rigidity of B-DNA. We find that unlike the bending rigidity, the twist rigidity of DNA seems to vary widely with the nature and concentration of the salt buffer in which it is immerged

    Asymptotic theory for a moving droplet driven by a wettability gradient

    Full text link
    An asymptotic theory is developed for a moving drop driven by a wettability gradient. We distinguish the mesoscale where an exact solution is known for the properly simplified problem. This solution is matched at both -- the advancing and the receding side -- to respective solutions of the problem on the microscale. On the microscale the velocity of movement is used as the small parameter of an asymptotic expansion. Matching gives the droplet shape, velocity of movement as a function of the imposed wettability gradient and droplet volume.Comment: 8 fig
    • …
    corecore