493 research outputs found

    Interplay of superconductivity and magnetism in strong coupling

    Get PDF
    A model is introduced describing the interplay between superconductivity and spin-ordering. It is characterized by on-site repulsive electron-electron interactions, causing antiferromagnetism, and nearest-neighbor attractive interactions, giving rise to d-wave superconductivity. Due to a special choice for the lattice, this model has a strong-coupling limit where the superconductivity can be described by a bosonic theory, similar to the strongly coupled negative U Hubbard model. This limit is analyzed in the present paper. A rich mean-field phase diagram is found and the leading quantum corrections to the mean-field results are calculated. The first-order line between the antiferromagnetic- and the superconducting phase is found to terminate at a tricritical point, where two second-order lines originate. At these lines, the system undergoes a transition to- and from a phase exhibiting both antiferromagnetic order and superconductivity. At finite temperatures above the spin-disordering line, quantum-critical behavior is found. For specific values of the model parameters, it is possible to obtain SO(5) symmetry involving the spin- and the phase-sector at the tricritical point. Although this symmetry is explicitly broken by the projection to the lower Hubbard band, it survives on the mean-field level, and modes related to a spontaneously broken SO(5) symmetry are present on the level of the random phase approximation in the superconducting phase.Comment: 16 pages Revtex, 5 figure

    Melting of Partially Fluorinated Graphene: From Detachment of Fluorine Atoms to Large Defects and Random Coils

    Get PDF
    The melting of fluorographene is very unusual and depends strongly on the degree of fluorination. For temperatures below 1000 K, fully fluorinated graphene (FFG) is thermo-mechanically more stable than graphene but at Tm≈_m\approx2800 K FFG transits to random coils which is almost twice lower than the melting temperature of graphene, i.e. 5300 K. For fluorinated graphene (PFG) up to 30 % ripples causes detachment of individual F-atoms around 2000 K while for 40-60 % fluorination, large defects are formed beyond 1500 K and beyond 60% of fluorination F-atoms remain bonded to graphene until melting. The results agree with recent experiments on the dependence of the reversibility of the fluorination process on the percentage of fluorination.Comment: 16 pages, 6 figure

    Quantum magnetism in the stripe phase: bond- versus site order

    Full text link
    It is argued that the spin dynamics in the charge-ordered stripe phase might be revealing with regards to the nature of the anomalous spin dynamics in cuprate superconductors. Specifically, if the stripes are bond ordered much of the spin fluctuation will originate in the spin sector itself, while site ordered stripes require the charge sector as the driving force for the strong quantum spin fluctuations.Comment: 4 pages, 3 figures, LaTe

    Superconductivity and Quantum Spin Disorder in Cuprates

    Full text link
    A fundamental connection between superconductivity and quantum spin fluctuations in underdoped cuprates, is revealed. A variational calculation shows that {\em Cooper pair hopping} strongly reduces the local magnetization m0m_0. This effect pertains to recent neutron scattering and muon spin rotation measurements in which m0m_0 varies weakly with hole doping in the poorly conducting regime, but drops precipitously above the onset of superconductivity

    Suppression of Antiferromagnetic Order by Light Hole Doping in La_2Cu_{1-x}Li_xO_4: A ^{139}La NQR Study

    Full text link
    ^{139}La nuclear quadrupole resonance measurements in lightly doped La_2Cu_{1-x}Li_xO_4 have been performed to reveal the dependence of the magnetic properties of the antiferromagnetic CuO_2 planes on the character of the doped holes and their interactions with the dopant. A detailed study shows that the magnetic properties are remarkably insensitive to the character of the dopant impurity. This indicates that the added holes form previously unrecognized collective structures.Comment: 4 pages, 3 figures. Slightly modified version, as accepted for publication in Physical Review Letter

    Quantifying measures to limit wind driven resuspension of sediments for improvement of the ecological quality in some shallow Dutch lakes

    Get PDF
    Although phosphorus loadings are considered the main pressure for most shallow lakes, wind-driven resuspension can cause additional problems for these aquatic ecosystems. We quantified the potential effectiveness of measures to reduce the contribution of resuspended sediments, resulting from wind action, to the overall light attenuation for three comparable shallow peat lakes with poor ecological status in the Netherlands: Loosdrecht, Nieuwkoop, and Reeuwijk (1.8–2.7 m depth, 1.6–2.5 km fetch). These measures are: 1. wave reducing barriers, 2. water level fluctuations, 3. capping of the sediment with sand, and 4. combinations of above. Critical shear stress of the sediments for resuspension (Vcrit), size distribution, and optical properties of the suspended material were quantified in the field (June 2009) and laboratory. Water quality monitoring data (2002–2009) showed that light attenuation by organic suspended matter in all lakes is high. Spatial modeling of the impact of these measures showed that in Lake Loosdrecht limiting wave action can have significant effects (reductions from 6% exceedance to 2% exceedance of Vcrit), whereas in Lake Nieuwkoop and Lake Reeuwijk this is less effective. The depth distribution and shape of Lake Nieuwkoop and Lake Reeuwijk limit the role of wind-driven resuspension in the total suspended matter concentration. Although the lakes are similar in general appearance (origin, size, and depth range) measures suitable to improve their ecological status differ. This calls for care when defining the programme of measures to improve the ecological status of a specific lake based on experience from other lakes.

    Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array

    Get PDF
    When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.Comment: Submitted to Nuclear Instruments and Methods in Physics Research Section

    Melting of Partially Fluorinated Graphene: From Detachment of Fluorine Atoms to Large Defects and Random Coils

    Get PDF
    The melting of fluorographene is very unusual and depends strongly on the degree of fluorination. For temperatures below 1000 K, fully fluorinated graphene (FFG) is thermo-mechanically more stable than graphene but at T m ≈ 2800 K FFG transits to random coils which is almost twice lower than the melting temperature of graphene, i.e. 5300 K. For fluorinated graphene (PFG) up to 30% ripples causes detachment of individual F-atoms around 2000 K while for 40-60% fluorination, large defects are formed beyond 1500 K and beyond 60% of fluorination F-atoms remain bonded to graphene until melting. The results agree with recent experiments on the dependence of the reversibility of the fluorination process on the percentage of fluorination.Fil: Singh, Sandeep Kumar. Universiteit Antwerpen. Department of Physics; BĂ©lgicaFil: Costamagna, Sebastian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FĂ­sica de Rosario (i); Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂ­a y Agrimensura; ArgentinaFil: Neek Amal, M.. Universiteit Antwerpen. Department of Physics; BĂ©lgicaFil: Peeters, F. M.. Universiteit Antwerpen. Department of Physics; BĂ©lgic

    Nonthermal Emission from a Supernova Remnant in a Molecular Cloud

    Get PDF
    In evolved supernova remnants (SNRs) interacting with molecular clouds, such as IC 443, W44, and 3C391, a highly inhomogeneous structure consisting of a forward shock of moderate Mach number, a cooling layer, a dense radiative shell and an interior region filled with hot tenuous plasma is expected. We present a kinetic model of nonthermal electron injection, acceleration and propagation in that environment and find that these SNRs are efficient electron accelerators and sources of hard X- and gamma-ray emission. The energy spectrum of the nonthermal electrons is shaped by the joint action of first and second order Fermi acceleration in a turbulent plasma with substantial Coulomb losses. Bremsstrahlung, synchrotron, and inverse Compton radiation of the nonthermal electrons produce multiwavelength photon spectra in quantitative agreement with the radio and the hard emission observed by ASCA and EGRET from IC 443. We distinguish interclump shock wave emission from molecular clump shock wave emission accounting for a complex structure of molecular cloud. Spatially resolved X- and gamma- ray spectra from the supernova remnants IC 443, W44, and 3C391 as might be observed with BeppoSAX, Chandra XRO, XMM, INTEGRAL and GLAST would distinguish the contribution of the energetic lepton component to the gamma-rays observed by EGRET.Comment: 14 pages, 4 figure, Astrophysical Journal, v.538, 2000 (in press
    • 

    corecore