1,736 research outputs found

    Fermi-Bose transformation for the time-dependent Lieb-Liniger gas

    Get PDF
    Exact solutions of the Schrodinger equation describing a freely expanding Lieb-Liniger (LL) gas of delta-interacting bosons in one spatial dimension are constructed. The many-body wave function is obtained by transforming a fully antisymmetric (fermionic) time-dependent wave function which obeys the Schrodinger equation for a free gas. This transformation employs a differential Fermi-Bose mapping operator which depends on the strength of the interaction and the number of particles.Comment: 4+ pages, 1 figure; added reference

    Momentum distribution of a freely expanding Lieb-Liniger gas

    Get PDF
    We numerically study free expansion of a few Lieb-Liniger bosons, which are initially in the ground state of an infinitely deep hard-wall trap. Numerical calculation is carried out by employing a standard Fourier transform, as follows from the Fermi-Bose transformation for a time-dependent Lieb-Liniger gas. We study the evolution of the momentum distribution, the real-space single-particle density, and the occupancies of natural orbitals. Our numerical calculation allows us to explore the behavior of these observables in the transient regime of the expansion, where they are non-trivially affected by the particle interactions. We derive analytically (by using the stationary phase approximation) the formula which connects the asymptotic shape of the momentum distribution and the initial state. For sufficiently large times the momentum distribution coincides (up to a simple scaling transformation) with the shape of the real-space single-particle density (the expansion is asymptotically ballistic). Our analytical and numerical results are in good agreement.Comment: small changes; references correcte

    Discretized vs. continuous models of p-wave interacting fermions in 1D

    Full text link
    We present a general mapping between continuous and lattice models of Bose- and Fermi-gases in one dimension, interacting via local two-body interactions. For s-wave interacting bosons we arrive at the Bose-Hubbard model in the weakly interacting, low density regime. The dual problem of p-wave interacting fermions is mapped to the spin-1/2 XXZ model close to the critical point in the highly polarized regime. The mappings are shown to be optimal in the sense that they produce the least error possible for a given discretization length. As an application we examine the ground state of a interacting Fermi gas in a harmonic trap, calculating numerically real-space and momentum-space distributions as well as two-particle correlations. In the analytically known limits the convergence of the results of the lattice model to the continuous one is shown.Comment: 7 pages, 5 figure

    Attempted Bethe ansatz solution for one-dimensional directed polymers in random media

    Full text link
    We study the statistical properties of one-dimensional directed polymers in a short-range random potential by mapping the replicated problem to a many body quantum boson system with attractive interactions. We find the full set of eigenvalues and eigenfunctions of the many-body system and perform the summation over the entire spectrum of excited states. The analytic continuation of the obtained exact expression for the replica partition function from integer to non-integer replica parameter N turns out to be ambiguous. Performing the analytic continuation simply by assuming that the parameter N can take arbitrary complex values, and going to the thermodynamic limit of the original directed polymer problem, we obtain the explicit universal expression for the probability distribution function of free energy fluctuations.Comment: 32 pages, 1 figur

    Magnetic anomalies in Nd6Co(1.67)Si3: Surprising first order transitions in the low-temperature isothermal magnetization

    Full text link
    We present the results of magnetic measurements on Nd6Co(1.67)Si3, a compound recently reported to crystallize in a hexagonal structure (space group P6_3/m) and to undergo long range magnetic ordering below 84 K. The results reveal that the magnetism of this compound is quite complex with additional magnetic anomalies near 50 and 20 K. There are qualitative changes in the isothermal magnetization behavior with the variation of temperature. Notably, there is a field-induced spin reorientation as the temperature is lowered below 20 K. A finding we stress is that this transition is discontinuous for 1.8K in the virgin curve, but the first order character appears only after a field-cycling for a narrow higher temperature range near 5 K. Thus, this compound serves as an example for the stabilisation of first-order transition induced by magnetic-field-cycling. The issues of 'Phase co-existence' and 'meta-stability' after a field-cycling at low temperatures in this compound are also addressed

    Current induced domain wall dynamics in the presence of spin orbit torques

    Full text link
    Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velocity depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached by a proper tuning of both torques.Comment: 9 pages, 3 figure

    Extended trigonometric Cherednik algebras and nonstationary Schr\"odinger equations with delta-potentials

    Get PDF
    We realize an extended version of the trigonometric Cherednik algebra as affine Dunkl operators involving Heaviside functions. We use the quadratic Casimir element of the extended trigonometric Cherednik algebra to define an explicit nonstationary Schr\"odinger equation with delta-potential. We use coordinate Bethe ansatz methods to construct solutions of the nonstationary Schr\"odinger equation in terms of generalized Bethe wave functions. It is shown that the generalized Bethe wave functions satisfy affine difference Knizhnik-Zamolodchikov equations in their spectral parameter. The relation to the vector valued root system analogs of the quantum Bose gas on the circle with pairwise delta-function interactions is indicated.Comment: 23 pages; Version 2: expanded introduction and misprints correcte

    Pairing states of a polarized Fermi gas trapped in a one-dimensional optical lattice

    Full text link
    We study the properties of a one-dimensional (1D) gas of fermions trapped in a lattice by means of the density matrix renormalization group method, focusing on the case of unequal spin populations, and strong attractive interaction. In the low density regime, the system phase-separates into a well defined superconducting core and a fully polarized metallic cloud surrounding it. We argue that the superconducting phase corresponds to a 1D analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, with a quasi-condensate of tightly bound bosonic pairs with a finite center-of-mass momentum that scales linearly with the magnetization. In the large density limit, the system allows for four phases: in the core, we either find a Fock state of localized pairs or a metallic shell with free spin-down fermions moving in a fully filled background of spin-up fermions. As the magnetization increases, the Fock state disappears to give room for a metallic phase, with a partially polarized superconducting FFLO shell and a fully polarized metallic cloud surrounding the core.Comment: 4 pages, 5 fig

    Exact Results for Three-Body Correlations in a Degenerate One-Dimensional Bose Gas

    Full text link
    Motivated by recent experiments we derive an exact expression for the correlation function entering the three-body recombination rate for a one-dimensional gas of interacting bosons. The answer, given in terms of two thermodynamic parameters of the Lieb-Liniger model, is valid for all values of the dimensionless coupling γ\gamma and contains the previously known results for the Bogoliubov and Tonks-Girardeau regimes as limiting cases. We also investigate finite-size effects by calculating the correlation function for small systems of 3, 4, 5 and 6 particles.Comment: 4 pages, 2 figure
    corecore