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EXTENDED TRIGONOMETRIC CHEREDNIK ALGEBRAS AND
NONSTATIONARY SCHRÖDINGER EQUATIONS WITH

DELTA-POTENTIALS

J.T. HARTWIG & J.V. STOKMAN

Abstract. We realize an extended version of the trigonometric Cherednik algebra as
affine Dunkl operators involving Heaviside functions. We use the quadratic Casimir ele-
ment of the extended trigonometric Cherednik algebra to define an explicit nonstationary
Schrödinger equation with delta-potential. We use coordinate Bethe ansatz methods to
construct solutions of the nonstationary Schrödinger equation in terms of generalized
Bethe wave functions. It is shown that the generalized Bethe wave functions satisfy affine
difference Knizhnik-Zamolodchikov equations as functions of in the momenta. The rela-
tion to the vector valued root system analogs of the quantum Bose gas on the circle with
delta-function interactions is indicated.

1. Introduction

The one dimensional quantum Bose gas with pairwise delta-function interactions [29] is
among the first nontrivial quantum integrable systems that were successfully analyzed using
the coordinate Bethe ansatz [29, 39, 40]. On the circle the coordinate Bethe ansatz leads
to Bethe wave functions, given as explicit plane wave expansions with momenta subject
to Bethe ansatz equations, which solve the associated stationary Schrödinger equation. In
this paper we will construct Bethe wave type functions solving nonstationary extensions of
Schrödinger equations associated to vector valued, root system analogs of the quantum Bose
gas on the circle with pairwise delta-function interactions. We will show that the role of
the Bethe ansatz equations is taken over by difference analogs of Knizhnik-Zamolodchikov
equations.

It is well known that the quantum inverse scattering method can be applied to the
one dimensional quantum Bose gas with pairwise delta-function interactions (see [28] and
references therein). The key point is the fact that the pertinent quantum Bose gas arises as
particle sector of the integrable quantum field theory in 1 + 1 dimensions governed by the
nonlinear Schrödinger equation. The resulting possibility to create and annihilate quantum
particles in the quantum Bose gas has in particular led to the explicit evaluation of the
norms of the Bethe wave functions (see [27, 28]) in terms of the Hessian of the Yang-Yang
action [40].

Quantum Calogero-Moser systems [33, 2], which can be defined for any root system,
form an important class of one dimensional integrable quantum many body systems with
pairwise interactions of rational, trigonometric, hyperbolic or elliptic type. The quantum
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trigonometric Calogero-Moser systems are naturally related to harmonic analysis on sym-
metric spaces [24]. Substantial progress has been made over the past decades in solving
quantum Calogero-Moser systems, with main tool the explicit realization of (degenerate)
Hecke algebra symmetries in terms of Dunkl type differential-reflection operators (see, e.g.,
[8, 22, 35, 7, 5, 2]). These systems do not arise though as particle sectors in particular
integrable quantum field theories, hence the application of quantum inverse scattering tech-
niques to such systems is limited. In particular there is no analog of particle creation and
annihilation, which for instance explains the completely different techniques in deriving
norm formulas; it is based on shift operators or intertwiners in the Hecke algebra context
(see, e.g., [34, 7, 36]) and on quantum particle creation/annihilation in the quantum inverse
scattering context [27].

The one dimensional quantum Bose gas with pairwise delta-function interactions, which
is completely accessible to quantum inverse scattering techniques, can also be naturally
viewed as member of the family of integrable quantum Calogero-Moser type systems.
Firstly, the one dimensional quantum Bose gas with pairwise delta-function interactions
has natural root system generalizations, going back to Gaudin, Gutkin and Sutherland
[18, 21, 20]. For classical root systems it corresponds to imposing integrable reflecting
boundary conditions on the quantum particles on the line. Secondly, Dunkl type operators
and integral-reflection operators have been associated to the one dimensional quantum Bose
gas with delta-function interactions and their root system generalizations, which opens the
way to apply the Hecke algebra techniques (see, e.g., [20, 37, 23, 12, 13]).

The quantum Bose gas with pairwise delta-function interactions thus is accessible for an
unusually large variety of techniques from integrable systems and representation theory.
This feature places the one dimensional quantum Bose gas with delta-function interactions
center stage of various new developments in mathematical physics and representation the-
ory (see, e.g., [23] and [19] for two striking examples) and leads to the intriguing question
how the quantum inverse scattering method and the Hecke algebra method can be united.
For instance, conjectures [9] have been put forward extending Korepin’s [27] norm for-
mulas to Bethe wave functions of the root system analogs of the quantum Bose gas with
pairwise delta-function interactions on the circle. Since Korepin’s arguments are no longer
applicable in the context of arbitrary root systems by the loss of quantum particle creation
and annihilation techniques, it seems to require now Hecke algebra techniques instead to
properly understand such norm formulas.

This formed an important motivation for the research leading up to the present work.
Our starting point is the observation from [13] that the root system analogs of the quantum
Bose gas on the circle with pairwise delta-function interactions arise from a representation
of the trigonometric Cherednik algebra at critical level in terms of Dunkl type operators.
This suggests the possibility to analyze the corresponding Bethe wave functions and norm
formulas as limits of Bethe wave type functions associated to arbitrary level. Such an
approach has been taken in recent years to successfully analyze the Bethe vectors for
Gaudin models and their norms as critical level limit of integral solutions to Knizhnik-
Zamolodchikov equations, see [31] and references therein, which in turn has interesting
connections to the geometric Langlands correspondence [14].
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Another important background for the current paper is the study of Knizhnik-Zamolod-
chikov-Bernard (KZB) heat equations, cf., e.g., cf. [1, 10, 15]. Correlation functions on the
torus satisfy, besides KZB equations, the KZB heat equation. For one-point correlation
functions the KZB heat equation is the only equation that remains. In that case it is
natural to view the KZB heat equation as a nonstationary Schrödinger equation involving
the modular parameter as time variable. At critical level it reduces to the quantum Hamil-
tonian of a vector valued version of the quantum elliptic Calogero-Moser-Sutherland model
(see [10, §4] and [15]). Special solutions are the so called affine Jack polynomials; they
can be defined algebraically [11, §6] or be expressed [11, Thm. 7.6] in terms of one-point
correlation functions. Cherednik [5, Thm. 4.3] has derived such nonstationary Schrödinger
equations using the action of the trigonometric Cherednik algebra by infinite trigonometric
Dunkl operators. q-Extensions of various of these results have been obtained, see, e.g., [11,
§11], [16, 17] and [6].

Let us describe now the results presented in this paper. In [12, 13] a suitable realization
of the trigonometric Cherednik algebra at critical level in terms of affine Dunkl operators
involving Heaviside functions enters the study of vector valued root system analogs of
the quantum Bose gas on the circle with pairwise delta-function interactions (Dunkl type
operators involving Heaviside functions appeared before in [37, 32, 26]). Following the idea
of Cherednik [5], we generalize this realization to an extended version of the trigonometric
Cherednik algebra at arbitrary level. It contains a quadratic Casimir element which we
show to produce an explicit nonstationary Schrödinger equation involving delta-potentials
(see Proposition 4.2).

We construct solutions of this nonstationary Schrödinger equation using an affine version
of the coordinate Bethe ansatz. The associated generalized Bethe wave functions are
defined in terms of an explicit cocycle of the extended affine Weyl group, which is obtained
from the normalized intertwiners of the trigonometric Cherednik algebra.

We show that the generalized Bethe wave function satisfies a consistent system of equa-
tions as function of the momenta. These equations are expected to be degenerations
of Cherednik’s [6] affine difference-elliptic quantum Knizhnik-Zamolodchikov equations.
These equations replace the requirement for the Bethe wave function of the (vector val-
ued) root system version of the quantum Bose gas on the circle with pairwise delta-function
interactions that the momenta satisfy Bethe ansatz type equations (see [12, Thm. 2.6] and
[13, Thm. 5.10]).

With suitable restrictions on the momenta (see (3.11) for the explicit requirements) we
show that the Bethe wave functions for the vector valued root system analog of the quan-
tum Bose gas on the line (see [23]) are limits of the generalized Bethe wave functions. The
limit to critical level is more subtle. We will only make some preliminary comments on it
in this paper. A thorough understanding of this limit is expected to lead to new insights on
the root system analogs of the quantum Bose gas on the circle with pairwise delta-function
potentials, for instance on the quadratic norms of the scalar Bethe wave functions.
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2. The extended trigonometric Cherednik algebra

2.1. Notations. Let g be a complex finite dimensional reductive Lie algebra with gs :=
[g, g] simple. Write h = hs ⊕ Z(g) with hs a Cartan subalgebra of gs and with Z(g) the
center of g.

Let (·, ·)s : hs × hs → C be the restriction of the Killing form of gs to hs × hs. Let
R = R(gs, hs) ⊂ hs be the set of roots of gs with respect to hs. It is a finite, reduced,
irreducible crystallographic root system, with the ambient Euclidean space Vs taken to be
the real span of R and with scalar product the restriction of the bilinear form (·, ·)s to
Vs × Vs. The root lattice Q (respectively the co-root lattice Q∨) is the rational integral
span of all the roots α ∈ R (respectively the co-roots α∨ (α ∈ R)). These are lattices in h

satisfying C⊗Z Q
∨ = hs = C⊗Z Q.

We fix a real form V of h of the form Vs⊕V ′ with V ′ a real form of Z(g). We extend the
scalar product (·, ·)s on Vs to a scalar product (·, ·) on V such that V ′ ⊥ Vs. Its complex
bilinear extension to a bilinear form on h is also denoted by (·, ·). We use it to identify the
linear dual h∗ with h. Set O(h) for the group of invertible complex linear endomorphisms
of h preserving the bilinear form (·, ·).

Put h̃ = h ⊕ Cc, ĥ = h ⊕ Cc ⊕ Cd, and extend the form (·, ·) to a non-degenerate

symmetric bilinear form on ĥ by requiring

(c, d) = 1, (c, c) = (d, d) = (c, v) = (d, v) = 0 ∀ v ∈ h.

Write O(ĥ) ⊂ GL(ĥ) for the subgroup of invertible linear endomorphisms preserving the

bilinear form (·, ·) on ĥ. We identify O(h) with the subgroup

{σ ∈ O(ĥ) | σ(h) = h & σ(c) = c, σ(d) = d}
of O(ĥ). For u ∈ h define tu ∈ O(ĥ) by

(2.1) tu(v + ηc+ ξd) = v + ξu+
(
η − ξ

2
(u, u)− (v, u)

)
c+ ξd,

where v ∈ h and η, ξ ∈ C. The map h → O(ĥ) given by u 7→ tu is a monomorphism of

groups. If σ ∈ O(h) then σ ◦ tu = tσ(u) ◦ σ. We conclude that O(ĥ) naturally contains the
subgroup O(h)⋉ h of affine linear transformations of h.

For a ∈ ĥ such that (a, a) 6= 0 we set a∨ := 2a/(a, a) ∈ ĥ and

sa(v̂) := v̂ − (v̂, a∨)a.

Note that sa ∈ O(ĥ) is an involution. It fixes c if a ∈ h̃ and also d if a ∈ h. WriteW ⊂ O(h)
for the Weyl group of R generated by sα (α ∈ R). The lattices Q and Q∨ are W -invariant.

Set R̂ = R⊕ Zc ⊆ h̃. It plays the role of the set of real roots of the untwisted affine Lie

algebra associated to gs, cf. [25]. If we identify Ṽ = V ⊕ Rc with the linear functionals
on V by interpreting v + ξc (v ∈ V , ξ ∈ R) as the affine linear functional mapping v′ to
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(v, v′) + ξ, then R̂ is a reduced irreducible affine root system in the sense of Macdonald
[30].

The affine Weyl group Ŵ of R̂ is defined to be the subgroup of O(ĥ) generated by sa
(a ∈ R̂). The affine Weyl group is contained in the subgroup of affine linear transformations
of h since

sα+mc = sαtmα∨ , α ∈ R, m ∈ Z.

In particular Ŵ ≃W ⋉Q∨.
Fix a choice of positive roots R+ of R and let F = {a1, . . . , an} be the associated set of

simple roots. Let θ be the highest root in R+ and set a0 := −θ + c. Then F̂ := {a0} ∪ F
is a set of simple roots of R̂, i.e. every affine root a ∈ R̂ can uniquely be written as
a nonnegative or nonpositive rational integral combination of the ai’s. Denote R̂+ and

R̂− for the associated sets of positive and negative affine roots, respectively. The affine

Weyl group Ŵ is a Coxeter group with Coxeter generators the simple reflections si := sai
(0 ≤ i ≤ n). The finite Weyl group W ⊂ Ŵ is the standard parabolic subgroup generated
by si (1 ≤ i ≤ n). Note that s0 = sθt−θ∨ = tθ∨sθ.

We fix a lattice Y in V containing Q∨ and satisfying (Y,Q) ⊆ Z. Note that Y is

automaticallyW -invariant. The associated extended affineWeyl group is defined by Ŵ Y :=

W ⋉ Y . It contains the affine Weyl group Ŵ as a normal subgroup, and Ŵ Y /Ŵ ≃ Y/Q∨

is abelian.
The affine root system R̂ ⊂ h̃ and the level ξ hyperplanes

(2.2) ĥξ := h̃+ ξd

are Ŵ Y -invariant. Furthermore, Ŵ Y ≃ Ω⋉Ŵ with Ω = ΩY the subgroup of Ŵ Y consisting

of elements ω such that ω(R̂+) ⊆ R̂+. The group Ω permutes the simple affine roots.

2.2. The definition. The trigonometric Cherednik algebra, also known as the degenerate
double affine Hecke algebra, was defined in [5, Def. 1.1]. We use an extended version,
defined as follows.

Definition 2.1. Let k : R̂ → C be a Ŵ Y -invariant function, which we call a multiplicity

function. The extended trigonometric Cherednik algebra ĤY (k) = ĤY (k;V ) is the asso-
ciative unital C-algebra satisfying

(1) ĤY (k) contains the symmetric algebra S(ĥ) and the group algebra C[Ŵ Y ] as subal-
gebras,

(2) the multiplication map defines a linear isomorphism S(ĥ)⊗C C[Ŵ Y ] ≃ ĤY (k),
(3) the following cross relations hold:

sa · v̂ = sa(v̂) · sa − ka(a, v̂), ∀a ∈ F̂ , ∀ v̂ ∈ ĥ,

ω · v̂ = ω(v̂) · ω, ∀ω ∈ Ω, ∀ v̂ ∈ ĥ.
(2.3)

The subalgebra H̃Y (k) of ĤY (k) generated by S(h̃) and C[Ŵ Y ] is the trigonometric Chered-
nik algebra.
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Remark 2.2. (i) In the next subsection we verify that ĤY (k) is well defined (see Proposi-
tion 2.5).

(ii) The trigonometric Cherednik algebra H̃Y (k) admits a similar characterization (1)-(3)

as ĤY (k), with the role of the symmetric algebra S(ĥ) taken over by S(h̃).
(iii) Let U ⊆ V be the real span of Y and U⊥

C
⊂ h the complexification of the orthocom-

plement U⊥ of U in V . Then ĤY (k;V ) ≃ ĤY (k;U)⊗C S(U
⊥
C
) as algebras.

We write Ĥ(k) := ĤQ∨

(k) and H̃(k) := H̃Q∨

(k). Note that

ĤY (k) ≃ Ω⋉ Ĥ(k), H̃Y (k) ≃ Ω⋉ H̃(k).

Observe that c ∈ Z(ĤY (k)). We define the extended trigonometric Cherednik algebra at

level κ to be ĤY
κ (k) := ĤY (k)/(c− κ).

We call H̃Y
κ (k) := H̃Y (k)/(c − κ) the trigonometric Cherednik algebra at level κ, and

H̃Y
0 (k) the trigonometric Cherednik algebra at critical level. A detailed analysis of H̃Y

0 (k)
in connection to the root system analogs of the one dimensional quantum Bose gas with
pairwise delta-function interactions was undertaken in [12] and [13]. In this context the

quantum Hamiltonians of the quantum integrable system arise from the center Z(H̃Y
0 (k))

of H̃Y
0 (k), which contains S(h)W . In this paper we consider these structures away from

critical level, replacing the role of H̃Y
0 (k) by the extended trigonometric Cherednik algebra

ĤY (k). Its center is described as follows.

Proposition 2.3. If Y is a full lattice in V then Z
(
ĤY (k)

)
= S(ĥ)Ŵ

Y

= C[c, C], where

C ∈ S(ĥ)Ŵ
Y

is the Casimir element

(2.4) C =

m∑

i=1

v2i + 2cd,

and {vi}mi=1 is an (arbitrary choice of) orthonormal basis of V with respect to (·, ·).
Proof. Let {bj}m+2

j=1 be a basis of V̂ and {bj}m+2
j=1 its dual basis with respect to

(
·, ·

)
. The

Casimir element can alternatively be defined by

(2.5) C =

m+2∑

j=1

bjb
j .

From the Ŵ Y -invariance of
(
·, ·

)
it then follows that C ∈ S(ĥ)Ŵ

Y

.

Now take an orthonormal basis {vi}ni=1 of Vs. Set ĥs = hs ⊕ Cc⊕ Cd and write

Cs :=

n∑

i=1

v2i + 2cd ∈ S(ĥs).

By [3, Prop. 4.1] we have S(ĥs)
Ŵ = C[c, Cs]. Considering S(ĥs) and S(Z(g)) as Ŵ -module

subalgebras of S(ĥ), we conclude that

S(ĥ)Ŵ = S(ĥs)
ŴS(Z(g)) = C[c, Cs]S(Z(g)) = C[C]S(Z(g)⊕ Cc),



EXTENDED TRIGONOMETRIC CHEREDNIK ALGEBRAS 7

where the last equality follows from the fact that C − Cs ∈ S(Z(g)). Set Y0 := Y ∩ V ′

(recall that V ′ is the real form of Z(g) such that V = Vs ⊕ V ′). Since C is Ŵ Y -invariant
we conclude that

S(ĥ)Ŵ
Y ⊆ C[C]S(Z(g)⊕ Cc)Y0.

Furthermore,

S(Z(g)⊕ Cc)Y0 = C[c]

since Y0 is a full lattice in V ′, cf. the proof of [3, Prop. 4.1]. We conclude that S(ĥ)Ŵ
Y

=
C[c, C]. Hence it remains to show that

Z(ĤY (k)) = S(ĥ)Ŵ
Y

.

This can be proved by a straightforward adjustment of the analogous statement (due to
Lusztig) for the degenerate affine Hecke algebra, cf. [35, Prop. 1.1]. �

2.3. Difference-reflection operators. We construct now a representation of the ex-

tended trigonometric Cherednik algebra ĤY (k) using Dunkl operators involving Heaviside

functions. It generalizes the representation of the trigonometric Cherednik algebra H̃Y
0 (k)

at critical level constructed in [13, §4.2].
Set Ṽ = V ⊕ Rc and V̂ := Ṽ ⊕ Rd. The bilinear form (·, ·) on ĥ restricts to a real

valued non-degenerate symmetric bilinear form on V̂ . We also write V̂ + := Ṽ ⊕R>0d and

V̂ξ := Ṽ + ξd. Note that Ṽ , V̂ , V̂ + and V̂ξ are Ŵ Y -invariant subsets of ĥ.
The open subset

V̂ +
reg := {v̂ = v + ηc+ ξd ∈ V̂ + | (a, v̂) 6= 0 ∀a ∈ R̂+}

of regular elements in V̂ + is Ŵ Y -invariant. Denote by C the collection of connected com-

ponents of V̂ +
reg. The affine Weyl group Ŵ acts simply transitively on C. The convex

polytope

Ĉ+ :={v̂ ∈ V̂ + | (a, v̂) > 0 ∀ a ∈ F̂}
={v̂ ∈ Vs ⊕ R>0d | (a, v̂) > 0 ∀ a ∈ F̂} ⊕ V ′ ⊕ Rc

is a connected component of V̂ +
reg which we call the fundamental chamber. Note that

ω(Ĉ+) = Ĉ+ for all ω ∈ Ω.

M will always stand for a finite dimensional, complex, left Ŵ Y -module. Its representa-
tion map will be denoted by πM .

We define the complex vector space

FM :=
∏

Ĉ∈C

(
Cω(V̂ +)⊗C M

)
,

where Cω(V̂ +) is the space of complex valued, real analytic functions on V̂ +. An element
f = (f

Ĉ
)
Ĉ∈C ∈ FM should be thought of as a collection of real analyticM-valued functions

f
Ĉ

on Ĉ (Ĉ ∈ C) with the additional requirement that each f
Ĉ

admits a real analytic
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extension to V̂ +. We define the support supp(f) of f = (fĈ)Ĉ∈C ∈ FM to be the collection

of connected components Ĉ for which fĈ is nonzero. Note that Ŵ Y acts on f = (fĈ)Ĉ∈C ∈
FM by

(2.6) (wf)Ĉ(v̂) := πM (w)
(
fw−1Ĉ(w

−1v̂)
)
, w ∈ Ŵ Y , Ĉ ∈ C, v̂ ∈ V̂ +.

For v̂ ∈ V̂ we define the linear endomorphism ∂v̂ of FM as the componentwise directional
derivative,

(∂v̂f)Ĉ(û) := (∂v̂fĈ)(û) =
d

dt
|t=0fĈ(û+ tv̂).

For a ∈ R̂+ let χa : V̂ → {0, 1} be the characteristic function of the half-space H−
a := {v̂ ∈

V̂ | (a, v̂) < 0}. For each chamber Ĉ ∈ C either χa|Ĉ ≡ 1 or χa|Ĉ ≡ 0. We also write χa

for the linear endomorphism of FM mapping f = (f
Ĉ
)
Ĉ∈C to χaf := {χa(Ĉ)fĈ}Ĉ∈C.

Lemma 2.4. Fix Ĉ = w(Ĉ+) ∈ C (w ∈ Ŵ ). If a ∈ R̂+ then the following two statements
are equivalent:

(1) Ĉ ∈ supp(χaf) for some f ∈ FM ,

(2) a ∈ R̂+ ∩ w(R̂−) (which is a finite set of positive affine roots).

Proof. Both are easily seen to be equivalent to χa(Ĉ) = 1. �

The lemma allows us to define linear operators DM
v̂ (v̂ ∈ V̂ ) on FM by

DM
v̂ f := ∂v̂f −

∑

a∈R̂+

ka(a, v̂)χasaf.

The following proposition extends the results from [13, §4.2].

Proposition 2.5. Let k : R̂ → C be a multiplicity function.

(1) The extended trigonometric Cherednik algebra ĤY (k) is well defined.
(2) The assignments

v̂ 7→ DM
v̂ , v̂ ∈ V̂ ,

w 7→ w, w ∈ Ŵ Y ,

uniquely define an algebra morphism π̂ : ĤY (k) → EndC

(
FM

)
.

Proof. Repeating the arguments of the proof of [12, Thm. 4.1] gives that the operators

DM
v̂ (v̂ ∈ V̂ ), sa (a ∈ F̂ ) and ω (ω ∈ Ω) on FM satisfy the defining relations of ĤY (k),

saDM
v̂ = DM

sav̂
sa − ka(a, v̂),

ωDM
v̂ = DM

ωv̂ ω,

DM
v̂ DM

v̂′ = DM
v̂′ DM

v̂ .
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For Y = Q∨ and M = Triv the trivial one-dimensional Ŵ -module the resulting linear map

S(ĥ)⊗C C[Ŵ ] → End(FTriv) is easily seen to be injective, hence the extended trigonomet-

ric Cherednik algebras Ĥ(k) and ĤY (k) = Ω ⋉ Ĥ(k) are well defined. Part (2) of the
proposition follows now immediately. �

Remark 2.6. A trigonometric version of the representation π̂|H̃Y (k) was constructed by

Cherednik in [5, Thm. 3.1] using infinite trigonometric Dunkl operators. He considers
separately a trigonometric analog of the operator π̂(d) (see [5, (4.12)]). He remarks that
the cross relations (2.3) are respected (see [5, (4.13)]) but that, in contrast to our setup, it

does not result in a representation of the extended trigonometric Cherednik algebra ĤY (k).

Note that DM
c = ∂c since (a, c) = 0 for all a ∈ R̂. Hence for κ ∈ C,

Fκ
M := {f ∈ FM | ∂cf = κf}

is a ĤY (k)-submodule of FM , and the action of ĤY (k) on Fκ
M descends to an action of the

extended trigonometric Cherednik algebra ĤY
κ (k) at level κ.

For λ̂ ∈ ĥ let eλ̂ ∈ O(ĥ) be the holomorphic function µ̂ 7→ e(λ̂,µ̂). Its restriction to V̂ +

defines a complex valued, real analytic function on V̂ + which we also will denote by eλ̂.
We have

Fκ
M =

∏

Ĉ∈C

(
Cω

κ (V̂
+)⊗C M

)

where

Cω
κ (V̂

+) := {f ∈ Cω(V̂ +) | ∂c(f) = κf}.
Note that Cω

κ (V̂
+) = eκdCω

0 (V̂
+).

2.4. Integral-reflection operators. In this subsection we give a second representation
of the extended trigonometric Cherednik algebra ĤY (k), now in terms of integral-reflection
operators. The results in this subsection build on constructions from [20, 23, 12, 13].

For a ∈ R̂ define an integral-reflection operator I(a) on Cω(V̂ +) by

(2.7) (I(a)f)(v̂) :=

∫ (a,v̂)

0

f(v̂ − ta∨)dt.

The following is a version of [13, Thm. 4.11] at unspecified level.

Theorem 2.7. Let M be a finite dimensional Ŵ Y -module. There exists a unique algebra

homomorphism Q̂ : ĤY (k) → EndC

(
Cω(V̂ +)⊗C M

)
satisfying

Q̂(sa) = sa ⊗ πM(sa)− kaI(a)⊗ IdM , a ∈ F̂ ,

Q̂(ω) = ω ⊗ πM (ω), ω ∈ Ω,

Q̂(v̂) = ∂v̂ ⊗ IdM , v̂ ∈ V̂ .

(2.8)
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Proof. Consider S(ĥ)⊗C M
∗ as left ĤY (k)-module by the canonical vector space identifi-

cation

Ind
ĤY (k)

C[ŴY ]
(M∗) ≃ S(ĥ)⊗C M

∗.

Using the complex linear antiinvolution † : ĤY (k)
∼−→ ĤY (k) defined by w† = w−1 (w ∈

Ŵ Y ) and v̂† = v̂ (v̂ ∈ V̂ ), its linear dual (S(ĥ)⊗C M
∗)∗ becomes a left ĤY (k)-module.

View Cω(V̂ +) ⊗C M as linear subspace of (S(ĥ) ⊗C M
∗)∗ by interpreting f ⊗ m (f ∈

Cω(V̂ ∗), m ∈M) as the linear functional

p⊗ ψ 7→ ψ(m)(p(∂)f)(0), p ∈ S(ĥ), ψ ∈M∗

on S(ĥ)⊗CM
∗, where p(∂) is the constant coefficient partial differential operator associated

to p ∈ S(ĥ). Then Cω(V̂ +) ⊗C M is a ĤY (k)-submodule of (S(ĥ) ⊗ M∗)∗. A direct

computation establishes the explicit formulas (2.8) for the resulting action of ĤY (k) on

Cω(V̂ +)⊗C M . �

Remark 2.8. The proof of Theorem 2.7 is simpler than the proof at critical level (see [13,
Thm. 4.11]), since at critical level the arguments of the above proof lead to an explicit
action by integral-reflection operators which is not yet of the desired form (see [13, Cor.
4.10]).

The integral-reflection operators Q̂(w) (w ∈ Ŵ ) gives rise to a linear map

T : Cω(V̂ +)⊗C M → FM ,

with Tf = {(Tf)C}C∈C ∈ FM for f ∈ Cω(V̂ +)⊗C M defined by

(Tf)
wĈ+(v̂) := πM(w)

((
Q̂(w−1)f

)
(w−1v̂)

)
, w ∈ Ŵ , v̂ ∈ V̂ +.

It is the unique linear map satisfying (Tf)
Ĉ+ = f and T ◦ Q̂(w) = π̂(w) ◦ T for all w ∈ Ŵ ,

cf. [13, Lemma 4.14]. In fact, in analogy with [13, Prop. 4.15] we have

Proposition 2.9. The linear map T : Cω(V̂ +)⊗C M → FM is ĤY (k)-linear,

T ◦ Q̂(h) = π̂(h) ◦ T, ∀h ∈ ĤY (k).

Remark 2.10. For κ ∈ C the space Cω
κ (V̂

+)⊗M is a ĤY (k)-submodule of Cω(V̂ +)⊗C M

with respect to the Q̂-action. The action on Cω
κ (V̂

+)⊗M descends to an action of ĤY
κ (k)

since Q̂(c) = ∂c. The intertwiner T restricts to an intertwiner

Tκ : Cω
κ (V̂

+)⊗C M → Fκ
M

of ĤY
κ (k)-modules.
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3. Generalized Bethe wave functions

In this section we construct generalized Bethe wave functions, being Q̂(Ŵ Y )-invariant

eigenfunctions of the constant coefficient differential operator Q̂(C), as infinite series ex-
pansions of plane waves with explicit cocycle values as coefficients. The relevant cocycle of

Ŵ Y arises from the normalized intertwiners of the trigonometric Cherednik algebra H̃Y (k).
On the other hand, this cocycle can be used to define a consistent system of equations.
These equations should be thought of as formal degenerations of Cherednik’s [6] affine
difference-elliptic quantum Knizhnik-Zamolodchikov equations. We show that the gener-
alized Bethe wave functions satisfy this consistent system of equations as function of the
momenta.

3.1. The cocycle. Let k : R̂ → C be a Ŵ Y -invariant multiplicity function. Set

ĥreg :={λ̂ ∈ ĥ | (a∨, λ̂) 6= 0, ka ∀a ∈ R̂},
ĥκ,reg :=ĥreg ∩ ĥκ,

so that ĥκ,reg = hκ,reg + Cc+ κd with

hκ,reg = {λ ∈ h | (α∨, λ) +
2mκ

(α, α)
6= 0, kα+mc ∀α ∈ R, ∀m ∈ Z}.

Let C+ = {z ∈ C | Re(z) > 0} be the open right half plane in C. Set ĥ+ := h̃+ C+d and

ĥ+reg := ĥreg ∩ ĥ+ =
⋃

κ∈C+

ĥκ,reg.

Then ĥ+reg ⊂ ĥ is open, connected, and the boundary of ĥ+reg contains ĥ0,reg.

Let C[ĥreg] be the subalgebra of the field of rational functions on ĥ obtained by adjoining

(a∨ − ka)
−1 and a−1 to C[ĥ] for all a ∈ R̂. By [7] we have

Proposition 3.1. There exist unique Jw ∈ C[ĥreg] ⊗ C[Ŵ Y ] (w ∈ Ŵ Y ) satisfying, as

rational C[Ŵ Y ]-valued functions on ĥreg,

Juw(λ̂) = Ju(wλ̂)Jw(λ̂) ∀ u, w ∈ Ŵ Y

and satisfying

Jsa(λ̂) =
(a∨, λ̂)sa + ka

(a∨, λ̂)− ka
, a ∈ F̂ ,

Jω(λ̂) = ω, ω ∈ Ω.

The proof of the proposition uses the normalized intertwiners of the trigonometric
Cherednik algebra, cf. [7].

Remark 3.2. Viewing Jw as C[Ŵ Y ]-valued rational function on ĥ, we have ∂c(Jw) = 0 for

all w ∈ Ŵ Y .
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The ring O(ĥ+reg) of holomorphic functions on ĥ+reg is naturally a C[ĥreg]-module. If M

is a Ŵ Y -module, the cocycle {Jw}w∈ŴY thus canonically acts on O(ĥ+reg)⊗C EndC(M).

Corollary 3.3. Let M be a finite dimensional Ŵ Y -module. Set

(3.1) (Ψ · w)(λ̂) := Ψ(wλ̂)Jw(λ̂), w ∈ Ŵ Y , Ψ ∈ O(ĥ+reg)⊗C EndC(M),

where Ψ is viewed as EndC(M)-valued holomorphic function on ĥ+reg. Then (3.1) defines a

right Ŵ Y -action on O(ĥ+reg)⊗C EndC(M).

We call the set of equations

(3.2) Ψ(tyλ̂)Jty(λ̂) = Ψ(λ̂) ∀ y ∈ Y

the affine difference Knizhnik-Zamolodchikov (adKZ) equations and

adKZ :=
(
O(ĥ+reg)⊗C EndC(M)

)·Y

the corresponding space of solutions. It is a ·W -submodule of O(ĥ+reg)⊗C EndC(M).

Remark 3.4. The affine difference KZ equations (3.2) are expected to be formal degener-
ations of Cherednik’s [6] affine difference-elliptic quantum affine KZ equations, which are
naturally associated to double affine Hecke algebras.

Explicitly, the affine difference KZ equations (3.2) read

(3.3) Ψ
(
λ+ κy + (η − κ

2
(y, y)− (λ, y))c+ κd)Jty(λ+ κd) = Ψ(λ+ ηc+ κd) ∀ y ∈ Y.

Set Oξ(ĥ
+
reg) = {f ∈ O(ĥ+reg) | ∂c(f) = ξf}, so that Oξ(ĥ

+
reg) = eξdO0(ĥ

+
reg). Observe that

Oξ(ĥ
+
reg)⊗C EndC(M) is a ·Ŵ Y -submodule of O(ĥ+reg)⊗C EndC(M). Set

adKZξ :=
(
Oξ(ĥ

+
reg)⊗C EndC(M)

)·Y
.

By (3.3), if Ψ ∈ Oξ(ĥ
+
reg)⊗C EndC(M) then Ψ ∈ adKZξ iff

(3.4) Ψ(λ+ κy + ηc+ κd)e−
κξ

2
(y,y)−ξ(λ,y)Jty(λ+ κd) = Ψ(λ+ ηc+ κd) ∀ y ∈ Y

as EndC(M)-valued holomorphic function in λ + ηc + κd ∈ ĥ+reg. Note that (3.4) formally
makes sense if κ = 0, in which case it gives

(3.5) Φ(λ)e−ξ(λ,y)Jty(λ) = Φ(λ), ∀y ∈ Y

for Φ(λ) ∈ EndC(M) and λ ∈ ĥ0,reg. These equations are closely related to the Bethe
ansatz equations for the vector valued root system analogs of the quantum Bose gas on
the circle with pairwise delta-function interactions, see [13, Thm. 5.10].

For ξ = 0 the affine difference KZ equations (3.4) for fixed κ ∈ C+ take the form

(3.6) Φ(λ+ κy)Jty(λ+ κd) = Φ(λ), ∀ y ∈ Y

for Φ a EndC(M)-valued holomorphic function on hκ,reg. These are degenerations of
Cherednik’s [4] quantum affine KZ equations associated to double affine Hecke algebras.
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They form a consistent system of difference equations naturally compatible to trigonomet-
ric KZ equations, see [38].

3.2. Bethe wave functions at critical level. Before constructing generalized Bethe
wave functions and their relation to the affine difference KZ equations, we first recall the

related results at critical level from [13]. Let ξ > 0 and writeQξ : H̃
Y
0 (k) → EndC(C

ω(V )⊗C

M) for the analog of the integral-reflection action Q̂ (see [13, Thm. 4.11]), defined by
Qξ(v) = ∂v (v ∈ V ) and

(Qξ(sa)f)(v) = πM(sa)f(sa ◦ξ v)− ka

∫ aξ(v)

0

f(v − tDa∨)dt, a ∈ F̂ ,

(Qξ(ω)f)(v) = πM(ω)f(ω−1 ◦ξ v), ω ∈ Ω,

where aξ(v) = (α, v) +mξ and Da = α for a = α +mc and v ∈ V , and where the action

Ŵ Y × V → V , (w, v) 7→ w ◦ξ v is defined by

w ◦ξ v = w(v), w ∈ W,

ty ◦ξ v = v + ξy, y ∈ Y.

Set Ñλ = {f ∈ Cω(V ) | p(∂)f = χλ(p)f ∀p ∈ S(h)W} for λ ∈ h. Here χλ is the linear
character of S(h) satisfying v 7→ (λ, v) and p(∂) stands for the constant coefficient partial

differential operator naturally associated to p ∈ S(h) by v 7→ ∂v (v ∈ V ). Then Ñλ is a
#W -dimensional vector space containing ewλ (w ∈ W ). In particular the ewλ (w ∈ W )

form a basis of Ñλ if λ ∈ hreg := {λ ∈ h | (λ, α) 6= 0 ∀α ∈ R}.
Since S(h)W ⊆ Z(H̃Y

0 (k)),

S̃M(λ) := Ñλ ⊗C M

is a finite dimensional Qξ(H̃
Y
0 (k))-submodule of Cω(V )⊗C M for all λ ∈ h∗.

Define for v ∈ V and λ ∈ h0,reg the Bethe wave function

ψλ(v) :=
∑

w∈W
e(wλ,v)Jw(λ) ∈ C[W ].

Note that the Jty(λ) (y ∈ Y ) pairwise commute. The following result from [13, Thm. 5.10]
relates the coordinate Bethe ansatz for vector valued root system analogs of the quantum
Bose gas on the circle with pairwise delta-function interactions to the study of the space

of Qξ(Ŵ
Y )-invariants in S̃M(λ).

Theorem 3.5. Let M be a finite dimensional Ŵ Y -module, m ∈ M and λ ∈ h0,reg. Then

ψλ(·)m ∈ S̃M(λ)Qξ(Ŵ
Y ) if and only if

Jty(λ)m = eξ(λ,y)m ∀y ∈ Y

(the Bethe ansatz equations).
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3.3. Generalized Bethe wave functions. Now we consider unspecified level. Without
loss of generality we assume that Y spans V (cf. Remark 2.2(iii)), in which case the center

of ĤY (k) is generated by c and C (see Proposition 2.3). The role of Ñλ is taken over by

N̂γ,Γ := {f ∈ Cω(V̂ +) | ∂c(f) = γf & ∆̂(f) = Γf}
for γ,Γ ∈ C, where ∆̂ is the constant coefficient differential operator associated to C,

∆̂ = ∆ + 2∂c∂d

and ∆ is the Laplacean on V . If λ̂ ∈ ĥκ then

ewλ̂ ∈ N̂
κ,(λ̂,λ̂) ∀w ∈ Ŵ Y .

Note that ŜM(γ,Γ) := N̂γ,Γ ⊗C M is a Q̂(ĤY (k))-submodule of Cω(V̂ +) ⊗ M . The

generalized Bethe wave functions will be Q̂(Ŵ Y )-invariant elements in the infinite dimen-

sional vector space ŜM(γ,Γ), explicitly defined as a convergent series expansion in the

ewλ̂ (w ∈ Ŵ Y ) for some λ̂ ∈ ĥγ (see (2.2)) satisfying (λ̂, λ̂) = Γ. In addition we show
that the role of the Bethe ansatz equations is taken over by the affine difference Knizhnik-
Zamolodchikov equations.

If M is a finite dimensional Ŵ Y -module then we regard EndC(M) as Ŵ Y -module by

w · ψ := πM(w) ◦ ψ. Note that evaluation at m ∈ M defines a ĤY (k)-linear map

ŜEndC(M)(γ,Γ) → ŜM(γ,Γ).

Theorem 3.6. Let M be a unitarizable finite dimensional Ŵ Y -module. For v̂ ∈ V̂ + and

λ̂ ∈ ĥ+reg the series

EM(v̂; λ̂) :=
∑

y∈Y
e(ty λ̂,v̂)Jty(λ̂),

E+
M(v̂; λ̂) :=

∑

w∈ŴY

e(wλ̂,v̂)Jw(λ̂)

converge in EndC(M) and satisfy

(1) E+
M(v̂; λ̂) =

∑
w∈W EM(v̂;wλ̂)Jw(λ̂).

(2) if λ̂ ∈ ĥκ,reg with κ ∈ C+ then

(a) EM(·; λ̂) ∈ Cω
κ (V̂

+)⊗C EndC(M),

(b) E+
M(·; λ̂) ∈ ŜEndC(M)(κ, (λ̂, λ̂))

Q̂(ŴY ).

(3) if v̂ ∈ V̂ξ with ξ > 0 then EM(v̂; ·) ∈ adKZξ and E+
M(v̂; ·) ∈ adKZ·W

ξ .

Proof. We first consider the convergence of the series, for which we use

Lemma 3.7. Let K ⊂ ĥ+reg be a compact subset. There exists a positive constant D = D(K)
such that

(3.7) ‖Jw(λ̂)‖M ≤ Dl(w), ∀w ∈ Ŵ Y , ∀λ̂ ∈
⋃

w∈ŴY

wK,
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where ‖ · ‖M is the norm on M turning M into a unitary Ŵ Y -module.

Proof. Since ĥ+reg is Ŵ
Y -invariant, ∪

w∈ŴYwK ⊂ ĥ+reg. Note that there exists a s = s(K) > 0
such that

|(λ̂, a∨)− ka| ≥ s ∀a ∈ R̂, ∀λ̂ ∈ K.

Then the estimate (3.7) is easily seen to be correct for w ∈ Ŵ Y with

l(w) := #(R̂+ ∩ w−1R̂−) ≤ 1

(i.e. for w ∈ Ŵ Y of the form w = ω or w = saω with a ∈ F̂ and ω ∈ Ω) if the constant
D = D(K) is taken to be

D = 1 +
2

s
max
a∈R̂

|ka|.

Note that D is well defined since k attains only finitely many values. The estimate (3.7) for

arbitrary w ∈ Ŵ Y holds true with the same positive constant D. This follows by induction

to l(w) using the cocycle property of Jw(λ̂). �

Write λ = Re(λ) +
√
−1Im(λ) with Re(λ), Im(λ) ∈ V . Combining the lemma with the

fact that

(3.8) l(ty) =
∑

α∈R+

|(y, α)|

and

(3.9) e(ty λ̂,v̂) = euκ+ξη+(λ,v)+(κv−ξλ,y)− ξκ

2
(y,y)

for y ∈ Y , v̂ = v + uc+ ξd ∈ V̂ξ (ξ > 0) and λ̂ = λ+ ηc+ κd ∈ ĥ+reg, we conclude that
∑

y∈Y
‖e(ty λ̂,v̂)Jty(λ̂)‖M ≤ euRe(κ)+ξRe(η)+Re((λ,v))

∑

y∈Y
e−

ξRe(κ)
2

(y,y)e(Re(κ)v−ξRe(λ),y)+log(D)
∑

α∈R+ |(y,α)|

if v̂ ∈ V̂ + and λ̂ ∈ K (with K ⊂ ĥ+reg a fixed compact set and D = D(K) the associated

positive constant). The absolute convergence of the series EM (v̂; λ̂) (v̂ ∈ V̂ + and λ̂ ∈ ĥ+reg)

follows. It also implies that EM (·; λ̂) is real analytic on V̂ + for λ̂ ∈ ĥ+reg and E(v̂; ·) is

holomorphic on ĥ+reg for v̂ ∈ V̂ +.
We continue now with the proof of (1)-(3).

(1) is immediate from the cocycle property of {Jw}w∈ŴY .
(2) We already established part (a).

(b) For a ∈ F̂ ,

Q̂(sa)E
+
M (·; λ̂) =

∑

w∈ŴY

esawλ̂saJw(λ̂)− ka
∑

w∈ŴY

(
I(a)ewλ̂

)
Jw(λ̂).

Now use that for λ̂ ∈ ĥ+reg,

I(a)
(
eλ̂
)
=
eλ̂ − esaλ̂

(a∨, λ̂)
,
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hence

(3.10) Q̂(sa)E
+
M(·; λ̂) =

∑

w∈ŴY

esawλ̂saJw(λ̂)− ka
∑

w∈ŴY

ewλ̂ − esawλ̂

(a∨, wλ̂)
Jw(λ̂).

Since λ̂ ∈ ĥ+reg, the explicit expression of the cocycle value Jsa(wλ̂) allows us to write

sa =
(
1− ka

(a∨, wλ̂)

)
Jsa(wλ̂)−

ka

(a∨, wλ̂)
.

Substituting in (3.10) and using the cocycle condition we get

Q̂(sa)E
+
M(·; λ̂) =

∑

w∈ŴY

(
1− ka

(a∨, wλ̂)

)
esawλ̂Jsaw(λ̂)−

∑

w∈ŴY

ka

(a∨, wλ̂)
ewλ̂Jw(λ̂).

In the first sum replace the summation variable w by saw. It follows that Q̂(sa)E
+
M(·; λ̂) =

E+(·; λ̂). If ω ∈ Ω then, using Q̂(ω) = ω ⊗ πM(ω) and Jω(wλ̂) = ω for all w ∈ Ŵ Y ,

Q̂(ω)E+
M(·; λ̂) =

∑

w∈ŴY

eωwλ̂Jωw(λ̂) = E+
M(·; λ̂).

Hence E+
M(·; λ̂) is Q̂(Ŵ Y )-invariant.

(3) The fact that EM(v̂; ·) solves the affine difference KZ equations is direct by the cocycle
condition: if y′ ∈ Y then

EM(v̂; ty′ λ̂)Jty′ (λ̂) =
∑

y∈Y
e(ty+y′ λ̂,v̂)Jty+y′

(λ̂) = E(v̂; λ̂).

Similarly one establishes E+
M (v̂; ·) ∈ adKZ·W . �

We call E+
M(·, λ̂) ∈ ŜEndC(M)(κ, (λ̂, λ̂)) for λ̂ ∈ ĥκ,reg (κ ∈ C+) the generalized Bethe wave

functions of level κ.

Remark 3.8. Formally one can think of the affine difference KZ equations as defining a

difference connection on the bundle over ĥ+reg with fiber at λ̂ ∈ ĥκ,reg (κ ∈ C+) given by

ŜM(κ, (λ̂, λ̂)). The difference connection commutes with the action of Q̂(ĤY (k)) on the

fibers of the bundle. The generalized Bethe wave function λ̂ 7→ E+
M(·, λ̂) then defines a flat

Q̂(Ŵ Y )-invariant section.

Remark 3.9. Fix κ ∈ C+. If λ ∈ hκ,reg satisfies

(3.11) (Re(λ), y) > −Re(κ)

2
(y, y) ∀ y ∈ Y \ {0},

then

lim
ξ→∞

EM (v + ξd, λ+ κd) = e(λ,v)IdM ,

lim
ξ→∞

E+
M (v + ξd, λ+ κd) =

∑

w∈W
e(wλ,v)Jw(λ) = ψλ(v)
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uniformly for v in compacta of V . Note that v 7→ ψλ(v) coincides with the Bethe wave
function of the vector valued root system analog of the quantum Bose gas on the line
with pairwise delta-function interactions, cf., e.g., [23], [13] and references therein. The
fundamental property of ψλ ∈ Cω(V )⊗C EndC(M) is the fact that it is a Q(W )-invariant
real analytic solution to the differential equations p(∂)f = p(λ)f for all p ∈ S(h)W , where
Q is the W -action on Cω(V ) ⊗C EndC(M) given by integral-reflection operators, cf. [23,
12, 13].

Example 3.10. The simplest example corresponds to the Steinberg module M = St, which

is the one-dimensional Ŵ Y -module with associated linear character w 7→ (−1)l(w) (w ∈
Ŵ Y ), since Jw(λ̂)|St = (−1)l(w) (w ∈ Ŵ Y ). We regard ESt and E+

St as scalar valued
functions. Assume for simplicity that (Y, P ) ⊆ Z, where P is the weight lattice of R. Then
l(ty) is even for all y ∈ Y (indeed, by W -invariance it suffices to prove it when (y, α) ≥ 0
for all α ∈ R, in which case l(ty) = 2(ρ, y) with ρ ∈ P the half sum of positive roots by
(3.8)). Then

ESt(v̂, λ̂) =
∑

y∈Y
e(ty λ̂,v̂)

= euκ+ξη+(λ,v)
∑

y∈Y
eκ(v,y)−ξ(λ,y)− ξκ

2
(y,y)

if v̂ = v + uc+ ξd ∈ V̂ξ (ξ > 0) and λ̂ = λ+ ηc+ κd ∈ ĥκ,reg (κ ∈ C+). This is essentially
a classical theta function (cf. [25, Chpt. 13] and references therein). Furthermore,

E+
St(v̂, λ̂) =

∑

w∈W
(−1)l(w)ESt(v̂, wλ̂).

Example 3.11. Consider the trivial Ŵ Y -module M = Triv, which is the one-dimensional

Ŵ Y -module with associated linear character w 7→ 1 (w ∈ Ŵ Y ). Let jw ∈ O(ĥ+reg) (w ∈
Ŵ Y ) such that Jw(λ̂) acts as multiplication by jw(λ̂) on Triv. Viewing ETriv and E+

Triv as
scalar valued functions we thus get

ETriv(v̂, λ̂) =
∑

y∈Y
jty(λ̂)e

(ty λ̂,v̂),

E+
Triv(v̂, λ̂) =

∑

w∈W
ETriv(v̂, wλ̂)jw(λ̂).

The cocycle values are explicitly given by

jw(λ̂) =
∏

a∈R̂+∩w−1R̂−

(a∨, λ̂) + ka

(a∨, λ̂)− ka
, w ∈ Ŵ Y .
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In particular, if kα+mc = kα for all α ∈ R and m ∈ Z (this is automatically true if P ∨ ⊆ Y ,
with P ∨ the coweight lattice of R) then

jty (λ̂) =
∏

α∈R+:(α,y)>0

(α,y)−1∏

m=0

mκ∨α + (α∨, λ) + kα
mκ∨α + (α∨, λ)− kα

∏

β∈R+:(β,y)<0

−(β,y)∏

m=1

mκ∨β − (β∨, λ) + kβ

mκ∨β − (β∨, λ)− kβ
,

where λ̂ = λ+ ηc+ κd and κ∨α := 2κ/(α, α).

We present now a straightforward generalization of some of the statements of Theorem

3.6. Call f ∈ O(ĥ+reg)⊗C EndC(M) Ŵ Y -invariant if f ✁w = f for w ∈ Ŵ Y , where ✁ is the

right Ŵ Y -action on O(ĥ+reg)⊗C EndC(M) defined by

(f ✁ w)(λ̂) := Jw(λ̂)
−1f(wλ̂)Jw(λ̂).

Corollary 3.12. Let M be a finite dimensional unitarizable Ŵ Y -module and take f ∈
O(ĥ+reg)⊗C EndC(M). Set

E+
M,f(v̂, λ̂) := E+

M (v̂, λ̂)f(λ̂)

for v̂ ∈ V̂ + and λ̂ ∈ ĥ+reg.

For λ̂ ∈ ĥκ,reg and v̂ ∈ V̂ +
ξ (κ ∈ C+ and ξ ∈ R>0) we then have

(1) E+
M,f(·, λ̂) ∈ ŜEndC(M)(κ, (λ̂, λ̂))

Q̂(ŴY ),

(2) if f is Ŵ Y -invariant then E+
M,f(v̂, ·) ∈ adKZ·W

ξ .

Proof. (1) is clear from the theorem.

(2) Since f is Ŵ Y -invariant,

E+
M,f(v̂, λ̂) =

∑

w∈ŴY

e(wλ̂,v̂)f(wλ̂)Jw(λ̂),

which is ·Ŵ Y -invariant. �

Let λ̂ : (0, 1) → ĥ+reg be a path such that λ̂(t) → λ ∈ h0,reg if t ↓ 0. Then for all w ∈ Ŵ Y ,

lim
t↓0

e(λ̂(t),w(v+ξd)) = e(λ,w◦ξv)

and for all a ∈ R̂,

lim
t↓0

(I(a)eλ̂(t))(v + ξd) =

∫ aξ(v)

0

e(λ,v−tDa∨)dt.

Consequently

lim
t↓0

(
Q̂(w)eλ̂(t)

)
(v + ξd) =

(
Qξ(w)e

λ
)
(v), w ∈ Ŵ Y .

This suggests that if E+
M(v+ξd, λ̂(t)) converges as t ↓ 0, then it converges to the Bethe wave

function ψλ(v) associated to the vector valued root system analog of the quantum Bose gas
on the circle with pairwise delta-function interactions. More concretely we expect that for
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v̂ ∈ V̂ξ and for (λ,m) ∈ h0,reg×M satisfying the Bethe ansatz equations Jty(λ)m = eξ(λ,y)m

for all y ∈ Y , a renormalization of EM (v̂, λ̂)m converges to eξ(λ,v)m when λ̂ tends to λ along
specific paths.

Here we will only consider the simplest case that M = St. For the sake of simplicity
we assume that (Y, P ) ⊆ Z (cf. Example 3.10). Note that the k-dependence drops out
for M = St (it relates to the limit k → ∞ of the theory for the trivial representation

M = Triv, cf. [12, §3]). The Jty(λ̂) (y ∈ Y ) act trivially on St. Hence the Bethe ansatz
equations simplify to the requirement that λ ∈ hreg satisfies

eξ(λ,y) = 1 ∀y ∈ Y.

Equivalently λ ∈ 2π
√
−1

ξ
Xreg, where Xreg = X ∩ hreg and X ⊂ V is the lattice dual to Y

with respect to (·, ·). Fix λ ∈ 2π
√
−1

ξ
Xreg and v̂ ∈ V̂ξ, say v̂ = v + ηc+ ξd. Then

ESt(v̂, λ+ κd) = e(λ,v)ESt(v̂, κd),

hence for all y ∈ Y ,

ESt(v̂, κd)
−1ESt(v̂, λ+ κy + κd) = ESt(v̂, κ)

−1ESt(v̂, ty(λ+ κd))e
κξ

2
(y,y)+ξ(y,λ)

= ESt(v̂, κ)
−1ESt(v̂, λ+ κd)e

κξ

2
(y,y)+ξ(y,λ)

= e
κξ

2
(y,y)+(λ,v)

which converges to e(λ,v) as κ→ 0. In particular, for v̂ = v+ηc+ξd ∈ V̂ξ and λ ∈ 2π
√
−1

ξ
Xreg,

lim
C+∋κ→0

ESt(v̂, κd)
−1E+

St(v̂, λ+ κd) =
∑

w∈W
(−1)l(w)e(wλ,v),

in accordance to [12, Prop. 3.3].

4. Time dependent Schrödinger equations with delta potentials

In this section we construct the nonstationary Schrödinger equation with delta potentials
and its solutions. We first need to describe the image of the propagation operator T in
more detail. For b ∈ R̂ set Hb := {v̂ ∈ V̂ + | (v̂, b) = 0}.

Proposition 4.1. Let M be a Ŵ Y -module and let w ∈ Ŵ Y , b ∈ wF̂ , v̂ ∈ Hb, p ∈ S(ĥ)

and f ∈ T
(
Cω(V̂ )⊗C M

)
. Then

(4.1)
(
p(∂)f

wĈ+

)
(v̂)−

(
p(∂)f

sbwĈ+

)
(v̂) = kbπM(sb)

((
∆b(p)(∂)fwĈ+

)
(v̂)

)
,

where ∆b(p) :=
sbp−p

b∨
∈ S(ĥ). In particular fwĈ+(v̂) = fsbwĈ+(v̂) and if û ∈ V̂ , regarded as

an element in S(ĥ) of degree one, then

(∂ûfwĈ+)(v̂)− (∂ûfsbwĈ+)(v̂) = −kb(û, b)πM(sb)fwĈ+(v̂).
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Proof. (compare with the proof of [12, Thm 5.3(ii)] and [13, Prop. 4.16]).

By Ŵ Y -equivariance of T and (2.6), it suffices to prove (4.1) for w = 1.

Let a ∈ F̂ , v̂ ∈ Ha, p ∈ S(ĥ) and f = Tg with g ∈ Cω(V̂ )⊗C M . In ĤY (k) we have the
cross relation

sa · p− sa(p) · sa = ka∆a(p).

Applying the representation map Q̂, acting on g and evaluating at v̂ we get

πM (sa)(p(∂)g)(v̂)−
(
(sap)(∂)Q̂(sa)g

)
(v̂) = ka

(
∆a(p)(∂)g

)
(v̂)

because (Q̂(sa)p(∂)g)(v̂) = πM (sa)(p(∂)g)(v̂). Acting on both sides by πM(sa) we get

(p(∂)g)(v̂)−
(
p(∂)πM (sa)(Q̂(sa)g)(sa·)

)
(v̂) = kaπM (sa)

(
∆a(p)(∂)g

)
(v̂).

Since fĈ+ = g and fsaĈ+ = πM(sa)(Q̂(sa)g)(sa·), we get the desired identity
(
p(∂)fĈ+

)
(v̂)−

(
p(∂)fsaĈ+

)
(v̂) = kaπM (sa)

(
∆a(p)(∂)fĈ+

)
(v̂).

�

For f ∈ FM write f † ∈ L1
loc(V̂

+)⊗CM such that f †(v̂) = fĈ(v̂) if v̂ ∈ Ĉ (Ĉ ∈ C). Write

CM := {f ∈ FM | fwĈ+(v̂) = fsawĈ+(v̂) ∀w ∈ Ŵ Y , a ∈ wF̂ and v̂ ∈ Ha}.
If f ∈ CM then the local L1-function f † can be represented by a continuous function on

V̂ +, which we will also denote by f †. It is explicitly given by f †(v̂) = fĈ(v̂) if v̂ ∈ V̂ + ∩ Ĉ.
Note that T (Cω(V̂ +)⊗C M) ⊆ CM in view of Proposition 4.1.

We consider V̂ as Euclidean space with scalar product

〈û, v̂〉 :=
(
E(û), v̂

)
,

where E is the linear involution of V̂ satisfying E|V = IdV , E(c) = d and E(d) = c. If
{v1, . . . , vm} is an orthonormal basis of V with respect to (·, ·) then {v1, . . . , vm, c, d} is an

orthonormal basis of V̂ with respect to 〈·, ·〉. Let dv̂ denote the Lebesgue measure on V̂
and dσ(v̂) the induced measure on a hypersurface.

Define
ι : L1

loc(V̂
+)⊗C M → HomC

(
C∞

c (V̂ +),M
)

by

(ιg)(ϕ) =

∫

V̂ +

g(v̂)ϕ(v̂) dv̂.

Write
ĤM

k = ∆̂ +
∑

a∈R̂+

ka
√

〈a, a〉δ
(
(a, ·)

)
πM(sa)

for the linear map ĤM
k : C(V̂ +)⊗C M → HomC

(
C∞

c (V̂ +),M
)
defined by

(ĤM
k g)(ϕ) =

∫

V̂ +

g(v̂)(∆̂ϕ)(v̂) dv̂ +
∑

a∈R̂+

ka
√
〈a, a〉

∫

Ha

πM (sa)g(v̂)ϕ(v̂) dσ(v̂).
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Proposition 4.2. Let M be a finite dimensional Ŵ Y -module. Assume f ∈ CM satisfies
the derivative jump conditions

(4.2) (∂ûfC)(v̂)− (∂ûfsbC)(v̂) = −kb(b, û)πM(sb)fC(v̂)

for all b ∈ wF̂ , C = wĈ+, w ∈ Ŵ , û ∈ V̂ and v̂ ∈ Hb. Then

ι
(
(∆̂f)†

)
= ĤM

k (f †).

Remark 4.3. By Proposition 4.1, the jump conditions (4.2) are satisfied if f lies in the
image of the propagation operator T .

Proof. Let ϕ ∈ C∞
c (V̂ +) be a test function, then

ι
(
(∆̂f)†

)
(ϕ) =

∑

Ĉ∈C

∫

Ĉ

(∆̂fĈ)(v̂)ϕ(v̂)dv̂.

Substituting the definition of ∆̂ and applying repeatedly the divergence theorem one ob-
tains

ι
(
(∆̂f)†

)
(ϕ) =

∫

V̂ +

f †(v̂)(∆̂ϕ)(v̂)dv̂

+
∑

Ĉ∈C

∫

∂Ĉ

(
〈(gradf

Ĉ
)(v̂), E(N Ĉ(v̂))〉ϕ(v̂)− f

Ĉ
(v̂)〈(gradϕ)(v̂), E(N Ĉ(v̂))〉

)
dσ(v̂),

(4.3)

where N Ĉ : ∂Ĉ → V̂ is the unit outward normal vector field on the boundary ∂Ĉ of Ĉ.
We simplify now the boundary terms. Write

∑

Ĉ∈C

∫

∂Ĉ

fĈ(v̂)〈(gradϕ)(v̂), E(N Ĉ(v̂))〉dσ(v̂) =

=
∑

a∈R̂+

∑

Ĉ∈C:

(a,Ĉ)⊆R>0

∫

∂Ĉ+∩Ha

(
f
Ĉ
(v̂)〈(gradϕ)(v̂), E(N Ĉ(v̂))〉

+fsaĈ(v̂)〈(gradϕ)(v̂), E(N
saĈ(v̂))〉

)
dσ(v̂).

The contribution of the integral over Ĉ = wĈ+ (w ∈ Ŵ ) will be zero unless a ∈ wF̂ , in

which case N Ĉ(v̂) = − E(a)√
〈a,a〉

and N saĈ(v̂) = E(a)√
〈a,a〉

for v̂ ∈ ∂Ĉ+ ∩Ha. Since f ∈ CM we

have in addition f
Ĉ
(v̂) = f

saĈ
(V̂ ) for v̂ ∈ Ha, hence

∑

Ĉ∈C

∫

∂Ĉ

f
Ĉ
(v̂)〈(gradϕ)(v̂), E(N Ĉ(v̂))〉dσ(v̂) = 0.
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Similarly

∑

Ĉ∈C

∫

∂Ĉ

〈(gradf
Ĉ
)(v̂), E(N Ĉ(v̂))〉ϕ(v̂)dσ(v̂)

= −
∑

a∈R̂+

1√
〈a, a〉

∑

Ĉ∈C:

(a,Ĉ)⊆R>0

∫

∂Ĉ+∩Ha

( ∂fĈ
∂E(a)

(v̂)−
∂f

saĈ

∂E(a)
(v̂)

)
ϕ(v̂)dσ(v̂).

By (4.2) it follows that

∑

Ĉ∈C

∫

∂Ĉ

〈(gradf
Ĉ
)(v̂), E(N Ĉ(v̂))〉ϕ(v̂)dσ(v̂) =

∑

a∈R̂+

kb
√

〈a, a〉πM (sa)

∫

Ha

f †(v̂)ϕ(v̂)dσ(v̂).

Substitution in (4.3) shows that ι((∆̂f)†) = ĤM
k (f †). �

For λ̂ ∈ ĥ+reg and a unitarizable finite dimensional Ŵ Y -module M set

φ
λ̂
:= T

(
E+

M (·; λ̂)
)
∈ CEndC(M).

Note that φ
λ̂
is the unique Ŵ Y -invariant element in FEndC(M) satisfying

φ
λ̂,Ĉ+ = E+

M(·; λ̂).

Note that λ̂ 7→ φ
λ̂
(v̂) is in adKZW

ξ if v̂ ∈ V̂ξ (ξ > 0).

Proposition 4.4. With the above assumptions,

ĤEndC(M)
k (φ†

λ̂
) = (λ̂, λ̂)ι(φ†

λ̂
).

In particular, if λ̂ ∈ ĥreg,κ (κ ∈ C+) then

(4.4)
(
2κ∂d +∆+

∑

a∈R̂+

ka
√

〈a, a〉δ((a, ·))πM(sa)
)
φ†
λ̂
= (λ̂, λ̂)ι(φ†

λ̂
)

in the weak sense, meaning that the left hand side tested against ϕ ∈ C∞
c (V̂ +) is

∫

V̂ +

φ†
λ̂
(v̂)((−2κ∂d +∆)ϕ)(v̂)dv̂ +

∑

a∈R̂+

ka
√

〈a, a〉
∫

Ha

πM(sa)φ
†
λ̂
(v̂)ϕ(v̂)dσ(v̂).

Proof. φ
λ̂
∈ CEndC(M) satisfies the jump conditions (4.2) by Proposition 4.1. Hence

ĤM
k (φ†

λ̂
) = ι((∆̂φ

λ̂
)†) = (λ̂, λ̂)ι(φ

λ̂
)

by Proposition 4.2. The second statement follows from the first since ∂c(E
+
M(·; λ̂)) =

κE+
M(·; λ̂). �
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Formula (4.4) can be interpreted as φ
λ̂
, with λ̂ = λ + ηc + κd ∈ ĥreg,κ and κ ∈ C+,

solving (weakly) the time dependent Schrödinger equation

∂df = Hκf

with quantum Hamiltonian

Hκ =
1

2κ

(
−∆−

∑

a∈R̂+

ka
√

〈a, a〉δ((a, ·))πM(sa) + (λ, λ)
)
+ η.

Remark 4.5. At κ = 0, (4.4) formally reduces to a weak eigenvalue equation for

∆ +
∑

a∈R̂+

ka
√

〈a, a〉δ((a, ·))πM(sa).

This is not the weak quantum Hamiltonian of the vector valued root system analog of the
quantum Bose gas on the circle with pairwise delta-function interactions as analyzed in

[13, §4.5] with the help of the trigonometric Cherednik algebra H̃Y
0 (k), which is given by

∆ +
∑

a∈R̂+

ka
√

(a, a)δ((a, ·))πM(sa),

see [13, (4.18)].

Remark 4.6. Take λ̂ = λ+ κd ∈ ĥreg,κ with λ satisfying (3.11). Then

ψ0
λ(v) := lim

ξ→∞
φ†
λ+κd(v + ξd), v ∈ V

is well defined and independent of κ ∈ C+. An explicit expression is given as follows. Let

K+ := {v ∈ V | (v, α) > 0 ∀α ∈ F}

be the fundamental Weyl chamber of V . Choose w ∈ W such that v ∈ wK+. Then

v + ξd ∈ wĈ+ if ξ ≫ 0 and

ψ0
λ(v) = πM (w)

(
Q(w−1)ψλ

)
(w−1v),

cf. Remark 3.9. This shows that ψ0
λ is the Bethe wave function for the vector valued root

system analog of the quantum Bose gas on the line with pairwise delta-function interactions.
It is continuous and satisfies

(
∆+

∑

α∈R+

kα
√

(α, α)δ((α, ·))πM(sα)
)
ψλ = (λ, λ)ψλ

in the weak sense. These observations should be compared to the analysis at the trigono-
metric level in [10, §5].
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