83 research outputs found
Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis.
The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO\u2082, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV\u2081) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 \u3bcg\ub7m(-3) increase in NO\u2082 exposure was associated with lower levels of FEV\u2081 (-14.0 mL, 95% CI -25.8 to -2.1) and FVC (-14.9 mL, 95% CI -28.7 to -1.1). An increase of 10 \u3bcg\ub7m(-3) in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV\u2081 (-44.6 mL, 95% CI -85.4 to -3.8) and FVC (-59.0 mL, 95% CI -112.3 to -5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe
Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science?
The poultry red mite Dermanyssus gallinae is best known as a threat to the laying-hen industry; adversely affecting production and hen health and welfare throughout the globe, both directly and through its role as a disease vector. Nevertheless, D. gallinae is being increasingly implemented in dermatological complaints in non-avian hosts, suggesting that its significance may extend beyond poultry. The main objective of the current work was to review the potential of D. gallinae as a wider veterinary and medical threat. Results demonstrated that, as an avian mite, D. gallinae is unsurprisingly an occasional pest of pet birds. However, research also supports that these mites will feed from a range of other animals including: cats, dogs, rodents, rabbits, horses and man. We conclude that although reported cases of D. gallinae infesting mammals are relatively rare, when coupled with the reported genetic plasticity of this species and evidence of permanent infestations on non-avian hosts, potential for host-expansion may exist. The impact of, and mechanisms and risk factors for such expansion are discussed, and suggestions for further work made. Given the potential severity of any level of host-expansion in D. gallinae, we conclude that further research should be urgently conducted to confirm the full extent of the threat posed by D. gallinae to (non-avian) veterinary and medical sectors
PEOD: Pade estimated optimum (radar) detector
International audienc
Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner
Caspase-14 is the only member of the caspase family that shows a restricted tissue expression. It is mainly confined to epidermal keratinocytes and in contrast to other caspases, is not activated during apoptosis induced by ultraviolet irradiation or cytotoxic substances. As it is cleaved under conditions leading to terminal differentiation of keratinocytes we suggested that caspase-14 plays a part in the physiologic cell death of keratinocytes leading to skin barrier formation. Here we show that retinoic acid, at concentrations inhibiting terminal differentiation of keratinocytes, strongly suppressed caspase-14 mRNA and protein expression by keratinocytes in monolayer culture and in a three-dimensional in vitro model of differentiating human epidermis (skin equivalent). By contrast, the expression of the caspases 3 and 8, which are both activated during conventional apoptosis, was increased and unchanged, respectively, after retinoic acid treatment. In addition to inhibition of differentiation in skin equivalents, retinoic acid treatment led to keratinocyte apoptosis and activation of caspase-3, both of which were undetectable in differentiated control skin equivalents. As this occurred in the absence of detectable caspase-14, our data demonstrate that caspase-14 is dispensable for keratinocyte apoptosis. The fact that in contrast to caspase-3 and caspase-8, caspase-14, similarly to other keratinocyte differentiation-associated proteins, is downregulated by retinoids, strongly suggests that this caspase, but not caspase-3 and -8, plays a part in terminal keratinocyte differentiation and skin barrier formation
- …