1,268 research outputs found

    Ambipolar charge injection and transport in a single pentacene monolayer island

    Full text link
    Electrons and holes are locally injected in a single pentacene monolayer island. The two-dimensional distribution and concentration of the injected carriers are measured by electrical force microscopy. In crystalline monolayer islands, both carriers are delocalized over the whole island. On disordered monolayer, carriers stay localized at their injection point. These results provide insight into the electronic properties, at the nanometer scale, of organic monolayers governing performances of organic transistors and molecular devices.Comment: To be published in Nano Letter

    Physical Study by Surface Characterizations of Sarin Sensor on the Basis of Chemically Functionalized Silicon Nanoribbon Field Effect Transistor

    Full text link
    Surface characterizations of an organophosphorus (OP) gas detector based on chemically functionalized silicon nanoribbon field-effect transistor (SiNR-FET) were performed by Kelvin Probe Force Microscopy (KPFM) and ToF-SIMS, and correlated with changes in the current-voltage characteristics of the devices. KPFM measurements on FETs allow (i) to investigate the contact potential difference (CPD) distribution of the polarized device as function of the gate voltage and the exposure to OP traces and, (ii) to analyze the CPD hysteresis associated to the presence of mobile ions on the surface. The CPD measured by KPFM on the silicon nanoribbon was corrected due to side capacitance effects in order to determine the real quantitative surface potential. Comparison with macroscopic Kelvin probe (KP) experiments on larger surfaces was carried out. These two approaches were quantitatively consistent. An important increase of the CPD values (between + 399 mV and + 302 mV) was observed after the OP sensor grafting, corresponding to a decrease of the work function, and a weaker variation after exposure to OP (between - 14 mV and - 61 mV) was measured. Molecular imaging by ToF-SIMS revealed OP presence after SiNR-FET exposure. The OP molecules were essentially localized on the Si-NR confirming effectiveness and selectivity of the OP sensor. A prototype was exposed to Sarin vapors and succeeded in the detection of low vapor concentrations (40 ppm).Comment: Paper and supporting information, J. Phys. Chem. C, 201

    Fruit scent and observer colour vision shape food-selection strategies in wild capuchin monkeys

    Full text link
    The senses play critical roles in helping animals evaluate foods, including fruits that can change both in colour and scent during ripening to attract frugivores. Although numerous studies have assessed the impact of colour on fruit selection, comparatively little is known about fruit scent and how olfactory and visual data are integrated during foraging. We combine 25 months of behavioural data on 75 wild, white-faced capuchins (Cebus imitator) with measurements of fruit colours and scents from 18 dietary plant species. We show that frequency of fruit-directed olfactory behaviour is positively correlated with increases in the volume of fruit odours produced during ripening. Monkeys with red-green colour blindness sniffed fruits more often, indicating that increased reliance on olfaction is a behavioural strategy that mitigates decreased capacity to detect red-green colour contrast. These results demonstrate a complex interaction among fruit traits, sensory capacities and foraging strategies, which help explain variation in primate behaviour.https://www.nature.com/articles/s41467-019-10250-9Published versio

    Conductance switching at the nanoscale of diarylethene derivatives self-assembled monolayers on La0.7_{0.7}Sr0.3_{0.3}MnO3_3

    Full text link
    We report on the phosphonic acid route for the grafting of functional molecules, optical switch (dithienylethene diphosphonic acid, DDA), on La0.7Sr0.3MnO3 (LSMO). Compact self-assembled monolayers (SAMs) of DDA are formed on LSMO as studied by topographic atomic force microscopy (AFM), ellipsometry, water contact angle and X-ray photoemission spectroscopy (XPS). The conducting AFM measurements show that the electrical conductance of LSMO/DDA is about 3 decades below that of the bare LSMO substrate. Moreover, the presence of the DDA SAM suppresses the known conductance switching of the LSMO substrate that is induced by mechanical and/or bias constraints during C-AFM measurements. A partial light-induced conductance switching between the open and closed forms of the DDA is observed for the LSMO/DDA/C-AFM tip molecular junctions (closed/open conductance ratio of about 8). We show that, in the case of long-time exposition to UV light, this feature can be masked by a non-reversible decrease (a factor of about 15) of the conductance of the LSMO electrode.Comment: Full paper with supporting informatio

    Activity budget and gut microbiota stability and flexibility across reproductive states in wild capuchin monkeys in a seasonal tropical dry forest

    Get PDF
    Abstract Background Energy demands associated with pregnancy and lactation are significant forces in mammalian evolution. To mitigate increased energy costs associated with reproduction, female mammals have evolved behavioural and physiological responses. Some species alter activity to conserve energy during pregnancy and lactation, while others experience changes in metabolism and fat deposition. Restructuring of gut microbiota with shifting reproductive states may also help females increase the energy gained from foods, especially during pregnancy. The goal of this study was to examine the relationships among behaviour, gut microbiota composition, and reproductive state in a wild, non-human primate to better understand reproductive ecology. We combined life history data with > 13,000 behavioural scans and 298 fecal samples collected longitudinally across multiple years from 33 white-faced capuchin monkey (Cebus imitator) females. We sequenced the V4 region of the 16S rRNA gene and used the DADA2 pipeline to analyze microbial diversity. We used PICRUSt2 to assess putative functions. Results Reproductive state explained some variation in activity, but overall resting behaviours were relatively stable across pregnancy and lactation. Foraging was less frequent among females in the early stage of nursing compared to the cycling stage, though otherwise remained at comparable levels. Maximum temperature was a strong, significantly positive predictor of resting, while social dominance had a small but significantly negative effect on resting. Ecological variables such as available fruit biomass and rainfall had a small but significantly positive effects on measures of foraging time. Gut microbial community structure, including richness, alpha diversity, and beta diversity remained stable across the reproductive cycle. In pairwise comparisons, pregnant females exhibited increased relative abundances of multiple microbial ASVs, suggesting small changes in relation to reproductive state. Reproductive state was not linked to differential abundance of putative metabolic pathways. Conclusions Previous data suggest that activity budget and the gut microbiome shifts considerably during reproduction. The present study finds that both activity and gut microbial communities are less associated with reproduction compared to other predictors, including ecological contexts. This suggests that behavioural flexibility and gut microbial community plasticity is contrained by ecological factors in this population. These data contribute to a broader understanding of plasticity and stability in response to physiological shifts associated with mammalian reproduction

    Random interactions and spin-glass thermodynamic transition in the hole-doped Haldane system Y2x_{2-x}Cax_xBaNiO5_5

    Full text link
    Magnetization, DC and AC bulk susceptibility of the SS=1 Haldane chain system doped with electronic holes, Y2x_{2-x}Cax_xBaNiO5_5 (0\leqx\leq0.20), have been measured and analyzed. The most striking results are (i) a sub-Curie power law behavior of the linear susceptibility, χ(T)\chi (T)\sim TTα^{-\alpha}, for temperature lower than the Haldane gap of the undoped compound (x=0) (ii) the existence of a spin-glass thermodynamic transition at TTg_g = 2-3 K. These findings are consistent with (i) random couplings within the chains between the spin degrees of freedom induced by hole doping, (ii) the existence of ferromagnetic bonds that induce magnetic frustration when interchain interactions come into play at low temperature.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    Connection between low energy effective Hamiltonians and energy level statistics

    Full text link
    We study the level statistics of a non-integrable one dimensional interacting fermionic system characterized by the GOE distribution. We calculate numerically on a finite size system the level spacing distribution P(s)P(s) and the Dyson-Mehta Δ3\Delta_3 correlation. We observe that its low energy spectrum follows rather the Poisson distribution, characteristic of an integrable system, consistent with the fact that the low energy excitations of this system are described by the Luttinger model. We propose this Random Matrix Theory analysis as a probe for the existence and integrability of low energy effective Hamiltonians for strongly correlated systems.Comment: REVTEX, 5 postscript figures at the end of the fil

    Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs

    Get PDF
    We present Cassini Visual and Infrared Mapping Spectrometer observations of infrared auroral emissions from the noon sector of Saturn's ionosphere revealing multiple intense auroral arcs separated by dark regions poleward of the main oval. The arcs are interpreted as the ionospheric signatures of bursts of reconnection occurring at the dayside magnetopause. The auroral arcs were associated with upward field-aligned currents, the magnetic signatures of which were detected by Cassini at high planetary latitudes. Magnetic field and particle observations in the adjacent downward current regions showed upward bursts of 100–360 keV light ions in addition to energetic (hundreds of keV) electrons, which may have been scattered from upward accelerated beams carrying the downward currents. Broadband, upward propagating whistler waves were detected simultaneously with the ion beams. The acceleration of the light ions from low altitudes is attributed to wave-particle interactions in the downward current regions. Energetic (600 keV) oxygen ions were also detected, suggesting the presence of ambient oxygen at altitudes within the acceleration region. These simultaneous in situ and remote observations reveal the highly energetic magnetospheric dynamics driving some of Saturn's unusual auroral features. This is the first in situ identification of transient reconnection events at regions magnetically conjugate to Saturn's magnetopause

    Academic team formation as evolving hypergraphs

    Get PDF
    This paper quantitatively explores the social and socio-semantic patterns of constitution of academic collaboration teams. To this end, we broadly underline two critical features of social networks of knowledge-based collaboration: first, they essentially consist of group-level interactions which call for team-centered approaches. Formally, this induces the use of hypergraphs and n-adic interactions, rather than traditional dyadic frameworks of interaction such as graphs, binding only pairs of agents. Second, we advocate the joint consideration of structural and semantic features, as collaborations are allegedly constrained by both of them. Considering these provisions, we propose a framework which principally enables us to empirically test a series of hypotheses related to academic team formation patterns. In particular, we exhibit and characterize the influence of an implicit group structure driving recurrent team formation processes. On the whole, innovative production does not appear to be correlated with more original teams, while a polarization appears between groups composed of experts only or non-experts only, altogether corresponding to collectives with a high rate of repeated interactions

    Random Antiferromagnetic Spin-1/2 Chains with Competing Interactions

    Get PDF
    We study disordered antiferromagnetic spin-1/2 chains with nearest- and further-neighbor interactions using the real-space renormalization-group method. We find that the system supports two different phases, depending on the ratio of the strength between nearest-neighbor and further-neighbor interactions as well the bond randomness strength. For weak further neighbor coupling the system is in the familiar random singlet phase, while stronger further neighbor coupling drives the system to a large spin phase similar to that found in the study of random antiferromagnetic-ferromagnetic spin chains. The appearance of the large spin phase in the absence of ferromagnetic coupling is due to the frustration introduced by further neighboring couplings, and is unique to the disordered chains.Comment: 11 pages, 7 figure
    corecore