
SA

PHYSICAL REVIEW B 68, 024425 ~2003!

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Queensland eSpace
Random antiferromagnetic spin-12 chains with competing interactions
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We study disordered antiferromagnetic spin-1
2 chains with nearest- and further-neighbor interactions using

the real-space renormalization-group method. We find that the system supports two different phases, depending
on the ratio of the strength between nearest-neighbor and further-neighbor interactions as well the bond
randomness strength. For weak further-neighbor coupling the system is in the familiar random singlet phase,
while stronger further-neighbor coupling drives the system to a large spin phase similar to that found in the
study of random antiferromagnetic-ferromagnetic spin chains. The appearance of the large spin phase in the
absence of ferromagnetic coupling is due to the frustration introduced by further-neighboring couplings, and is
unique to the disordered chains.
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I. INTRODUCTION

One-dimensional quantum spin systems have been o
terest to physicists for many years. This is not only beca
these systems have been good testing grounds for va
theoretical techniques and approximations but also bec
they exhibit a wealth of fascinating low-energy physic
Among various intriguing phenomena of these systems,
interplay between quantum fluctuation and disorder has
tracted considerable recent attention. The most thoroug
studied model in this context is the random antiferrom
netic ~AF! spin-12 chain with nearest-neighbor interaction.
has been shown,1 using the celebrated real-spa
renormalization-group~RSRG! method,2,3 that the low-
energy physics of the model is controlled by the rand
singlet ~RS! fixed point of the RSRG and is universa
Among the universal properties of the random singlet ph
are the uniform spin susceptibility:x;1/T ln2 T, and the
disorder-averaged spin-spin correlation function^Si•Sj&
;(21)i 2 j /( i 2 j )2. The RSRG method~with proper exten-
sions! has also been applied with considerable success
number of other disordered spin chain models~all with
nearest-neighbor interaction only!,4–13 as well as two-leg
spin ladders.14–16

In the present work we study random AF spin-1
2 chains

with nearest- and further-neighbor couplings, using th
RSRG method. Our motivation comes from the followin
considerations. First of all, as mentioned above, existing
oretical studies have been focusing on models with near
neighbor couplings only; the renormalization-group~RG!
flow equations of the couplings are relatively simple in th
case which allows, for example, exact analytical solution
the fixed point in the case of random AF spin-1

2 chains.1 In
real physical systems, on the other hand, further- neigh
couplings are always present, and in certain cases they
even be quite strong. There are a few promising experime
realizations of materials that exhibit nontrivial next-neare
neighbor interactions. One of the examples of real phys
systems that may meet the criteria is CuGeO3.17–21 Studies
on this system have revealed that the angle of the Cu-O
bond is close to 90°. This will induce a competition of an
ferromagnetic superexchange between the Cu ions med
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by the oxygen ion and ferromagnetic direct exchange
tween the Cu ions. As a result the nearest-neighbor supe
change interaction is weakened and hence it is expected
the next-nearest-neighbor interactions which arise from
Cu-O-O-Cu path cannot be neglected. The strength of
second-neighbor bonds can also be controlled by apply
pressure to such systems. Masuda and co-workers22 studied
the effect of pressure on highly Mg-doped CuGeO3 and
found that the frustration is enhanced as the pressure is
creased. Another example of material that exhibits nontriv
second-neighbor interaction is Cu6Ge6O182xH2O studied by
Hase and co-workers.23 Thus, motivated by these experime
tal realizations, we study the effects of next-nearest-neigh
interactions, and in particular, the stability of the RS fix
point against their presence.

Secondly, nearest-neighbor models have no frustrat
Further-neighbor interactions, on the other hand, can in
duce frustration, and this is known to lead to new phys
and phases in the case of pure chains. For example,
known in the case of a spin-1

2 chain with nearest- and next
nearest-neighbor couplings (J1 and J2), that there are two
different phases depending on the ratio between the two.24–28

For zero or smallJ2 /J1, the system is in a gapless~critical!
phase with power-law spin-spin correlation, while for larg
J2 /J1 the system spontaneously dimerizes and opens a
in the excitation spectrum, and the spin-spin correlation
comes short range. In the special case ofJ2 /J151/2, which
is the so-called Majumdar-Ghosh model, the ground stat
the system is known exactly; they are collections of neig
boring spins forming singlet pairs over either even or o
nearest-neighbor bonds.29–32 It is thus of interest to study
how frustration affects the physics of disordered chains,
whether new phases can be stabilized by it.

Our results can be summarized as follows. We find t
there are two phases in the model we are considering, c
trolled by the ratio of the strength of nearest-neighbor a
next-nearest-neighbor interactions and the strength of b
randomness. The RS phase is found to be stable against
further-neighbor couplings; in this case the strength
further-neighbor couplings~as measured by the strength
nearest-neighbor couplings! flows to zero as the energy sca
decreases, thus the low-temperature properties of the sy
©2003 The American Physical Society25-1
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EDDY YUSUF AND KUN YANG PHYSICAL REVIEW B 68, 024425 ~2003!
are still controlled by the RS fixed point. For strong enou
further-neighbor couplings, on the other hand, the RS ph
becomes unstable and the system is driven into another p
which is controlled by large effective spins at low energi
We find that in this phase the system is still dominated
effective nearest-neighbor interactions at low energy; ho
ever, the effective couplings can be either antiferromagn
or ferromagnetic, with random distributions. We conclu
that this phase is the same as that found in random
ferromagnetic~F! spin chain systems with nearest-neighb
interactions only, studied by Westerberget al.5 The physical
origin of the appearance of effective ferromagnetic couplin
is the frustration introduced by further-neighbor coupling

The remainder of the paper is organized as follows.
Sec. II we introduce the model we study and discuss
application of the RSRG method to this model. Results
our numerical studies on the model are presented in Sec
In Sec. IV we summarize our findings and make connecti
with previous works that are related to our studies.

II. THE MODEL

We consider the AF spin-1
2 chain described by the follow

ing Hamiltonian:

H5 (
i 51

N21

JiSi•Si 111 (
i 51

N22

KiSi•Si 12 , ~1!

whereN is the number of spins on the chain,Si is a spin-12
operator at thei th site, and the positive couplingsJi andKi
are distributed randomly according to some probability d
tributions which will be described in more detail in the ne
section. The Hamiltonian in Eq.~1! consists of two terms
where the first term describes nearest-neighbor interact
between the spins and the second term describes n
nearest-neighbor~nnn! interactions. The schematic diagra
of the system described by the Hamiltonian~1! is depicted in
Fig. 1~a!. We mostly focus on chains with nn and nnn co
plings in this paper, but some results of chains with co
plings beyond nnn will also be presented.

We use the real-space renormalization-group method
study the Hamiltonian~1!. The application of this method to
AF spin-12 chains with nn couplings only is well known. Th
basic idea is to isolate the strongest bond in the syst
decimate it, and calculate the effective interactions gener
between what were the third-nearest neighbors. The key
plifying features in this case are that the generated inte
tions are always antiferromagnetic, and they connect o
nearest-neighbor spins~after the two spins coupled by th
strongest bond are removed!.

Appropriate extensions of the original RG scheme nee
be included in order to study the present model with furth
neighbor couplings properly. First we notice that the coor
nation number, i.e., the number of spins coupled to a gi
spin, grows as the energy scale is lowered so we nee
keep track of the structure of the system. This is in contr
to the AF spin-12 chain with nn couplings where the coord
nation number is always two. Second, as we see later in
paper, effective ferromagnetic couplings may be generate
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certain stages as the RSRG method is carried out in the p
ence of antiferromagnetic nnn couplings. The formation
ferromagnetic couplings allows the possibility of generati
effective spins with sizes larger than one-half, so we nee
extend the RG rules to incorporate arbitrary spin sizes
coupling signs. Let us discuss these in more detail. Cons
spin 3 and 4 in Fig. 1~a!, which are coupled by the stronge
bond, and other spins in the system that couple to at least
of them. Due to the presence of nnn couplings, we hav
six-spin problem instead of a four-spin problem for a giv
pair of spins coupled by the strongest bond. The Hamilton
for the six-spin problem is given by

H5H01HI , ~2!

where

H05J34S3•S4 ,

HI5J23S2•S31J45S4•S51J13S1•S3

1J35S3•S51J24S2•S41J46S4•S4 , ~3!

whereJi j is the antiferromagnetic coupling betweenSi and
Sj . We have shown in our previous work on spin ladder15

that to the second-order perturbation calculation,HI only
generates pairwise interactions among the spins and hen
is only necessary to include a pair of spins coupled to
two spins connected by the strongest bond when we cons
the effective interaction between them, i.e., we just have
consider four-spin clusters for a given segment which c
tains the strongest bond. Let us consider the most com
cated four-spin cluster where a given spin is coupled to th
other spins as depicted in Fig. 2. The renormalized coup
between two spins in the cluster, say, spins 2 and 5, is gi
by

FIG. 1. ~a! Schematic diagram for the AF spin-1
2 chain given by

the Hamiltonian~1!. In addition to the nearest-neighbor coupling
between the spins, we also include the next-nearest-neighbor
plings represented by the dashed lines. Here the strongest bo
represented by the thick bold line.~b! The renormalization schem
after the strongest bond is decimated. The thick dashed lines ar
renormalized couplings.
5-2
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J̃255J251
1

2J34
~J23J451J24J352J23J352J24J45!

5J251
1

2J34
~J232J24!~J452J35!, ~4!

where J̃i j is the renormalizedcoupling betweenSi and Sj ,
and Ji j is the original bond betweenSi and Sj . Examining
Eq. ~4!, we can see that some of the contributions to
renormalized coupling from second-order processes arefer-
romagnetic. The overall sign of the total interaction betwee
the second and fifth spins will be determined by the relat
strength between the antiferromagnetic nearest-neighbor
next-nearest-neighbor bonds. In general if the nnn coupli
are very weak compared to the nn couplings then the fe
magnetic interactions will not appear. This is quite differe
from what we found in the study of the ladder where effe
tive ferromagnetic interactions appear as soon as the R
applied to the system. Due to the possibility of the appe
ance of ferromagnetic couplings at some step of the RG,
necessary to generalize the RG procedure to include arbi
spin sizes and coupling signs. The discussion on how th
done has been spelled out in great detail in our earlier w
on spin ladders.15 We carry out the numerical calculatio
using the rules described in previous paragraphs and pre
the results in the next section.

III. NUMERICAL RESULTS

We present numerical results for spin chains with nn a
nnn interactions with the total number of spins up to 60 0
We search for the bond with the largest gap,D0, which is
defined as the gap between the ground state and the
excited state, decimate it, and calculate the effective inte
tions among the remaining spins. The procedure is repe
until the number of spins left is about 1% of the origin
number of spins in the system. We use 100 samples and
the disorder average over all these samples in all our ca
lations. The nearest-neighbor bonds are chosen to be dis
uted randomly according to the power-law probability dist
bution

Pnn~Ji !5~12a!Ji
2a , 0,Ji,1, ~5!

where the power-law exponenta,1 parametrizes the ran
domness strength; the larger thea, the stronger the random
ness. The reason for choosing a power-law form is beca
for the random spin-12 chain, the fixed-point distribution is
known to be in the power-law form. So by choosing initi

FIG. 2. The most complicated structure of a four-spin clus
where a given spin is coupled to the other three spins.
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distributions in the power-law form, we expect to start clos
to the fixed point and hence reduce the necessity to us
larger system size.

We consider two different ways of generating the n
bonds. First we consider nnn bonds which are comple
correlated with the nn bonds, where next-nearest-neigh
bondKi is determined from the nn bonds through the follo
ing relation:

Ki5L
JiJi 11

V0
, ~6!

whereL is a parameter introduced to control the strength
next-nearest-neighbor interactions andV0 is the cutoff of the
initial nearest-neighbor bonds distribution, which is 1. In t
limit L→0, the AF spin-12 chain with nearest-neighbor inter
actions only is recovered. Equation~6! comes from the fol-
lowing consideration. The interactions between two sp
come from the overlap integral of the electron wave fun
tions which are bound to the atoms sitting on the lattice si
In general, the wave function decays exponentially at la
distances, and so does the overlap integral. Let us cons
three electrons sitting on different lattice sites labeled 1
and 3. For two electrons separated by a distanceR, the typi-
cal interaction would have the formJ;e2R/a, wherea is a
length scale of order of the size of the wave function. Bas
on this picture, the interaction between the first and th
spins, which is basically the overlap integral between
first and third spins, can be written asJ;e2(R32R1)/a, where
R3 and R1 are measured with respect to some refere
point. This relation can be rewritten as

J;e2(R32R2)/ae2(R22R1)/a}J2J1 , ~7!

whereJi is the overlap integral betweenSi andSi 11. Hence,
it is reasonable to model the correlation as the product of
nearest-neighbor bonds as shown in Eq.~6!. We focus mostly
on this type of further-neighbor coupling, and unless sta
otherwise, the results presented below are for this type
further-neighbor coupling. For comparison, we have a
studied cases in which the nnn couplings are an uncorrel
case with the nn couplings, i.e., the nnn bonds are distribu
randomly in the system, independent of the distribution
the nn bonds. We choose the distribution to be in a pow
law form with the same exponent, but a different cutoffL:

Pnnn~Ki !5
12a

L12a
Ki

2a , 0,Ki,L. ~8!

Again L parametrizes the strength of nnn couplings. As
see later in the paper, while the topology of the phase d
grams is the same for these two cases, there is huge qu
tative differences in the position of the phase boundary.

As we carry out the RSRG method numerically, we mo
tor the appearance and proliferation of large effective sp
in the system. We plot the sample-averaged fraction of sp
larger than one-half as a function of energy scale,D0, in Fig.
3. The left panel of Fig. 3 shows how the formation of lar
effective spins evolves as the energy scale,D0, is lowered by
fixing a50 and varying nnn bond strength controlled byL,

r

5-3
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FIG. 3. The sample-averaged fraction of spins larger than one-half as a function of energy scale,D0. The error bars are about the size
the data points shown in the figure. The left panel shows how the fraction of spins larger than one-half fora50.0 changes asL is varied
and the right panel shows the change forL50.55 asa is varied. Both are calculated for N560 000. Strong enough next-nearest-neighb
interactions will drive the system into a new phase controlled by large effective spins. All calculations are done with correlated next
neighbor bonds given in Eq.~6!.
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while the right panel shows the change by fixingL50.55
and varyinga. Let us analyze the left panel of Fig. 3. It
very clear that, for fixeda, different antiferromagnetic nnn
bond strength will lead to different scenarios in the lo
energy limit. For weak enoughL ~in the regime whereL
,0.5) we do not find spin sizes other than one-half; not o
do we never find any spin larger than one-half but also
never find any ferromagnetic bonds in this regime. The s
ation drastically changes when we tune the strength of a
ferromagnetic nnn bonds up to 0.55 where we can see cle
that large effective spins dominate in the low-energy lim
and drive the system into a new phase. This can be un
stood in the following way. For weak enough nnn bon
these interactions are always suppressed by the presen
nn bonds. We have explained in Eq.~4! that the ferromag-
netic bond will appear if the nnn bonds are strong enoug
overcome the nn bonds. Apparently forL,0.5, the nnn
bonds are too weak to compete with nn bonds so we ne
see the emergence of ferromagnetic interactions in the
tem. On the other hand, forL.0.55, the antiferromagneti
nnn bonds are strong enough to overcome the nn bonds
allow the appearance of ferromagnetic bonds which in t
will drive the system into a new phase controlled by lar
effective spins.

The right panel of Fig. 3 shows another study of ho
large effective spins appear in the system by varying
disorder strengtha for fixed L50.55. We find that the for-
mation of large effective spins is suppressed as the b
disorder gets stronger. This also has a simple explana
With increasing bond disorder strength, the probability
finding weak nn bonds increases. This will give us ev
weaker nnn bonds because of the correlation between a n
nearest-neighbor bond with two nearest-neighbor bonds
given by Eq.~6!. These weak nnn bonds cannot comp
with the nn bonds which in turn will suppress the formati
of ferromagnetic bonds in the system. Based on this view,
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can understand why large effective spins are more difficul
form in the regime where the bond disorder is strong. So
strong enough bond disorder, no ferromagnetic bonds
appear due to the fact that nnn bonds cannot compete wit
bonds and the system will remain in the random singlet~RS!
phase.

The appearance of a new phase can also be deduced
plotting sample-averagedxT as a function of temperatur
where the temperature is associated with the energy sc
D0. We plot this in Fig. 4 where in the left panela is fixed
andL is varied, whereas in the right panelL is fixed anda
is varied.xT in the RS phase is well known to be given b
1/ ln2 T. For fixed a50, we can see increasing deviation
from 1/ ln2 T with increasing strength forL which gives us a
clear indication that the system is driven away from the
phase; forl.0.5 instead of falling as 1/ ln2 T, xT appears to
approach a constant in the low-T limit. The explanation for
this behavior is similar to the discussion in the previous pa
graph. Strong enough nnn bonds will allow the appeara
of ferromagnetic bonds which in turn form large effectiv
spins in the low-energy limit. These strongly correlated
fective spins govern the susceptibility of the system at l
temperature. The susceptibility in this phase has a differ
origin from the susceptibility for the RS phase where t
contribution comes from the undecimated half spins. T
same situation is encountered whenL is fixed anda is var-
ied, as shown in the right panel of Fig. 4. The deviations
more significant for smalla. This is consistent with our
discussion in the previous paragraph that for strong eno
bond disorder, the system remains in the RS phase bec
the overall strength of nnn bonds is much weaker than tha
nn bonds. This is indeed what we see in our numerical
sults, thatxT for biggera(.0.6) is closer to the value fo
the RS phase 1/ ln2 T.

We have established that there exist two phases in
system. The transition from one phase to another is c
5-4
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FIG. 4. The sample-averagedxT as a function of parameters of the model,a andL. The error bars are about the size of the data poi
For strong enough correlated next-nearest-neighbor interactions, given in Eq.~6!, the susceptibilities behave differently from 1/T ln2 T. The
contribution to the susceptibilities comes from large effective spins formed at low temperature.
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trolled by the strength of bond disordera and the strength o
nnn bondsL. For a50 andL,0.5 the system remains i
the RS phase while forL.0.55 the system is driven into th
new phase. We have already seen that the new phase is
trolled by large effective spins in the low-energy limit.
there any other parameter we can use to study the natu
the new phase? We address this question by studying
ratio of nn bond strength to nnn bond strength in the t
phases, as shown in Fig. 5. It is found that on either side
the phase boundary, nearest-neighbor bonds always dom
further-neighbor bonds.33 Now we have a more complet
02442
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picture of the new phase found in the system. The new ph
is controlled by large effective spins in the low-energy lim
and the dominant interactions come from the neare
neighbor bonds only. These nearest-neighbor interact
consist of both antiferromagnetic and ferromagnetic bon
These results suggest that in the low-energy limit, s
chains with antiferromagnetic nn and sufficiently strong n
interactions behave just like random antiferromagne
ferromagnetic spin chains, including a Curie susceptibi
discussed earlier. This brings us to the conclusion that
new phase found in the system we are studying is the s
nd nearest
ated by
FIG. 5. The sample-averaged ratio of the strength of the nearest-neighbor bonds to the strength of the bonds that are beyo
neighbor as a function of energy scale. It is clear from the plot that in either side of the phase, the interactions are domin
nearest-neighbor bonds only. We use the correlated next-nearest-neighbor interactions defined in Eq.~6!.
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FIG. 6. ~a! The numerically determined phase diagram for spin chains with competing interactions between nearest-neigh
next-nearest-neighbor interactions. The nnn interactions are correlated with the nn interactions~see text!. ~b! The numerically determined
phase diagram for spin chains with uncorrelated nnn interactions. In both casesa denotes the strength of the bond randomness anL
represents the strength of the next-nearest-neighbor interactions. The crosses in both figures represent numerical calculations.
lines are drawn by connecting the data points to illustrate the phase boundary more clearly.
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as the large spin phase found in the rand
antiferromagnetic-ferromagnetic spin chains in the lo
energy limit. The numerically determined phase diagram
spin chains with random antiferromagnetic nn and nnn bo
is shown in Fig. 6.

The left panel of this figure shows the phase diagram
the correlated next-nearest-neighbor bonds as given by
~6! whereas the right panel shows the diagram for unco
lated next-nearest-neighbor bonds. In both cases we find
the system supports only two phases, which are the ran
singlet phase and the large spin phase. There are some
ferences in the phase boundaries in these two cases. Firs
trend on how the phase boundaries change as we varya and
L is different for the correlated and uncorrelated ne
nearest-neighbor bonds. For the correlated case,L stays con-
stant as we increasea from 0 to 0.6 and tends to increase f
a larger than 0.6. For the uncorrelated one,L decreases with
increasinga. Secondly, the magnitude of criticalL for the
uncorrelated nnn couplings is much smaller than that for
correlated case, by as much as ten orders of magnitude fa
close to 1.

We believe that these differences can be understoo
follows. For the uncorrelated case we assign a probab
distribution function for the nnn bonds whose cutoff is d
termined byL, and the bonds are generated independen
the configuration of the nn bonds. Although in general
strength of the nnn bonds is much weaker than that of
bonds whenL is small, due to the uncorrelated nature of t
way in which they are generated, there is a small probab
that the next-nearest-neighbor coupling is actually stron
than the nearest-neighbor one in some regions of the sys
As we have explained earlier in the text, the overall sign
the total interaction generated by the RG between two s
depends heavily on the relative strength of the antiferrom
netic nn and nnn bonds; thus such rare events can lead t
generation of ferromagnetic bonds, which in turn may p
liferate as the energy scale lowers. In the correlated case
the other hand, such rare events are greatly suppressed b
correlation between nn and nnn bonds. We also know thaa
parametrizes the width of the distribution; for a givenL in
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the uncorrelated case, the bigger thea is, the wider the dis-
tributions for both the nn and nnn bond distributions, thus
larger the probability of the rare events discussed above,
the more likely ferromagnetic couplings get generated.
the other hand this effect is again suppressed for the cas
correlated nnn bonds, due to the way in which we para
etrize their strength; the larger thea, the smaller the overal
strength of the nnn bonds due to the way in which they
generated.

As discussed earlier, the appearance of effective fe
magnetic couplings is a consequence of competition betw
nearest- and further-neighbor couplings, or frustration.
have also studied spin chains with further-neighbor inter
tions that donot introduce frustration to the system. This
done by introducing ferromagnetic next-nearest-neigh
bonds or antiferromagnetic third-nearest-neighbor bon
The ferromagnetic next-nearest-neighbor bonds and ant
romagnetic third-nearest-neighbor bonds are generated in
way discussed at the beginning of this section, i.e., the bo
are generated through Eq.~6!. We present our results for thi
particular system in Fig. 7.

The upper panels of Fig. 7 show the sample-averaged
of the strength of nearest-neighbor interactions compare
the strength of further-neighbor interactions and the fract
of spins with sizes larger than one-half as a function of
energy scale,D0, for the system with ferromagnetic nex
nearest-neighbor bonds. We choose to fixa50 and to vary
L to see how the ratio changes as the energy scale is
ered. We find that the nearest-neighbor interactions alw
dominate over further-neighbor interactions at all ene
scales. The evolution of the spin sizes as the energy sca
lowered is also studied here. The result shows that no s
having a size larger than one-half is found in the syste
Based on these results we conclude that the presence o
romagnetic next-nearest-neighbor bonds does not drive
system into a new phase. The couplings are dominated
antiferromagnetic bonds which suppress the formation
effective spins larger than one-half at low energy. In the lo
energy limit the system stays in the RS phase. The lo
5-6



nd nearest
into the

etic third
-neighbor
interac-

hbor

RANDOM ANTIFERROMAGNETIC SPIN-12 CHAINS . . . PHYSICAL REVIEW B 68, 024425 ~2003!
FIG. 7. The sample-averaged ratio of the strength of the nearest-neighbor bonds to the strength of the bonds that are beyo
neighbor and the fraction of spins larger than one-half as a function of the energy scale for the model with no frustration introduced
system. Two types of interactions which do not generate frustration, i.e., ferromagnetic second neighbors and antiferromagn
neighbors, are introduced into the system. The upper two panels show the calculation for a model in which ferromagnetic second
interactions are introduced into the system while the lower two panels show the calculations for antiferromagnetic third-neighbor
tions. All graphs are calculated fora50 but with varyingL. It is clear from the plot that the interactions are dominated by nearest-neig
bonds only, regardless of the value ofL, and there is no formation of effective spins whose sizes are larger than one-half.
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panels of Fig. 7 show the plot of the ratio between t
strength of nearest- and further-neighbor bonds and the f
tion of spins with sizes larger than one-half as a function
the energy scale,D0, for the system with antiferromagneti
third-nearest-neighbor bonds. We also fixeda50 and vary
L for this case. The results are the same for those with
romagnetic next-nearest-neighbor bonds. These results
us a strong indication that the system stays in the RS ph
We can thus conclude that nonfrustrating further-neigh
bonds act as irrelevant perturbations in the low-energy lim
and hence the system stays in the RS phase.

IV. SUMMARY AND DISCUSSION

In this paper we have used the real-space renormaliza
group method to study random antiferromagnetic spi1

2

chains, with both nearest- and further-neighbor interactio
We find that the system supports two phases, the ran
singlet phase and the large spin phase. The latter is
stabilized by sufficiently strong further-neighbor couplin
that compete with the nearest-neighbor couplings, so
there is frustration in the system.

The real-space renormalization-group procedure is qu
titatively accurate only when the initial distributions of th
couplings are broad. We believe, however, that our con
sion remains valid even if the initial distribution of coupling
02442
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is not broad. In the case of nearest-neighbor coupling o
Doty and Fisher34 showed that weak bond randomness is
relevant perturbation that immediately destabilizes the L
tinger liquid fixed point that describes the gapless phase
the pure chain, and bond randomnessgrows as the energy
scale lowers, eventually bringing the system to the rand
singlet fixed point. Their arguments remain valid even in t
presence of further-neighbor couplings, as long as they
not strong enough to destabilize the gapless phase in
absence of bond randomness. On the other hand when
are strong enough to put the pure system in the gapped p
with spontaneous dimerization, one of us35 showed that the
dimerized phase isalso unstableagainst weak randomnes
since randomness nucleates solitons and destroys spon
ous dimerization; the low-energy degrees of freedom are
half spins carried by the solitons, with random interacti
with broad distribution~due to the fluctuation of intersoliton
distance, etc.!. Depending on whether the coupling betwe
these spins is purely AF or both F and AF, the systems ca
in either one of the two phases we find here. We thus c
clude that these are the only two phases the system sup
in the presence of any amount of bond randomness.36

The frustration-induced ferromagnetic coupling and t
resultant large spin formation has been discussed in a di
ent context.10 In that work Yang and Bhatt studied spin-
chains with random AF nearest-neighbor bonds, with b
quadratic and biquadratic couplings on each bond. It w
5-7
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shown that even though overall each individual bond is A
as long as in some of the bonds the quadratic and biquad
couplings have opposite tendencies~i.e., one is AF and the
other F!, effective ferromagnetic couplings may be genera
at low energy, and the large spin phase stabilized. In this c
the bonds are frustrated due to the competition between
dratic and biquadratic couplings on thesamebond. Thus the
phenomenon of frustration-induced large spin formati
e

v.

m
i-

.

s.

et

v.

se
s.
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although never seen in pure systems, may actually be ra
generic in disordered systems.
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