202 research outputs found

    Nonadditivity of Polymeric and Charged Surface Interactions: Consequences for Doped Lamellar Phases

    Full text link
    We explore theoretically the modifications to the interactions between charged surfaces across an ionic solution caused by the presence of dielectric polymers. Although the chains are neutral, the polymer physics and the electrostatics are coupled; the intra-surface electric fields polarise any low permittivity species (e.g., polymer) dissolved in a high permittivity solvent (e.g., water). This coupling enhances the polymer depletion from the surfaces and increases the screening of electrostatic interactions with respect to a model which treats polymeric and electrostatic effects as independent. As a result, the range of the ionic contribution to the osmotic interaction between surfaces is decreased, while that of the polymeric contribution is increased. These changes modify the total interaction in a nonadditive manner. Building on the results for parallel surfaces, we investigate the effect of this coupling on the phase behaviour of polymer-doped smectics.Comment: 29 pages, 11 figures, v2: minor corrections added, published version available at http://dx.doi.org/10.1021/la050173

    Flow kinetics of mouse histocompatibility antigens.

    Full text link

    Sheared bioconvection in a horizontal tube

    Full text link
    The recent interest in using microorganisms for biofuels is motivation enough to study bioconvection and cell dispersion in tubes subject to imposed flow. To optimize light and nutrient uptake, many microorganisms swim in directions biased by environmental cues (e.g. phototaxis in algae and chemotaxis in bacteria). Such taxes inevitably lead to accumulations of cells, which, as many microorganisms have a density different to the fluid, can induce hydrodynamic instabilites. The large-scale fluid flow and spectacular patterns that arise are termed bioconvection. However, the extent to which bioconvection is affected or suppressed by an imposed fluid flow, and how bioconvection influences the mean flow profile and cell transport are open questions. This experimental study is the first to address these issues by quantifying the patterns due to suspensions of the gravitactic and gyrotactic green biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow. With no flow, the dependence of the dominant pattern wavelength at pattern onset on cell concentration is established for three different tube diameters. For small imposed flows, the vertical plumes of cells are observed merely to bow in the direction of flow. For sufficiently high flow rates, the plumes progressively fragment into piecewise linear diagonal plumes, unexpectedly inclined at constant angles and translating at fixed speeds. The pattern wavelength generally grows with flow rate, with transitions at critical rates that depend on concentration. Even at high imposed flow rates, bioconvection is not wholly suppressed and perturbs the flow field.Comment: 19 pages, 9 figures, published version available at http://iopscience.iop.org/1478-3975/7/4/04600

    The Antiviral Action of Interferon Is Potentiated by Removal of the Conserved IRTAM Domain of the IFNAR1 Chain of the Interferon α/β Receptor: Effects on JAK-STAT Activation and Receptor Down-regulation

    Get PDF
    The first cloned chain (IFNAR1) of the human interferon-α (IFNα) receptor acts as a species-specific transducer for type I IFN action when transfected into heterologous mouse cells. Stably transfected mouse L929 cell lines expressing truncation mutants of the intracellular domain of the human IFNAR1 chain were tested for biological responses to human IFNα. Deletion of the intracellular domain resulted in a complete loss of sensitivity to the biological activity of human IFN but markedly increased IFNAR1 cell surface expression, demonstrating that the intracellular domain is required for biological function and contains a domain that negatively regulates its cell surface expression. Removal of the conserved membrane distal 16-amino-acid IRTAM (InterferonReceptorTyrosineActivationMotif) sequence: (1) increased sensitivity to IFNα's antiviral activity, (2) increased the rapid IFNα-dependent formation of STAT-containing DNA-binding complexes, (3) prolonged tyrosine phosphorylation kinetics of the JAK-STAT pathway, and (4) blocked the IFN-dependent down-regulation of the IFNAR1 chain. These results indicate that the IRTAM negatively regulates signaling events required for the induction of IFN's biological actions via regulating receptor down-regulation

    Microbial mutualism at a distance: The role of geometry in diffusive exchanges

    Get PDF
    The exchange of diffusive metabolites is known to control the spatial patterns formed by microbial populations, as revealed by recent studies in the laboratory. However, the matrices used, such as agarose pads, lack the structured geometry of many natural microbial habitats, including in the soil or on the surfaces of plants or animals. Here we address the important question of how such geometry may control diffusive exchanges and microbial interaction. We model mathematically mutualistic interactions within a minimal unit of structure: two growing reservoirs linked by a diffusive channel through which metabolites are exchanged. The model is applied to study a synthetic mutualism, experimentally parametrized on a model algal-bacterial co-culture. Analytical and numerical solutions of the model predict conditions for the successful establishment of remote mutualisms, and how this depends, often counterintuitively, on diffusion geometry. We connect our findings to understanding complex behavior in synthetic and naturally occurring microbial communities.Gates Cambridge Trust The Winton Foundation for the Physics of Sustainability The Royal Society The Schlumberger Chair Fun

    Migration of chemotactic bacteria in soft agar: role of gel concentration

    Get PDF
    We study the migration of chemotactic wild-type Escherichia coli populations in semisolid (soft) agar in the concentration range C = 0.15-0.5% (w/v). For C < 0.35%, expanding bacterial colonies display characteristic chemotactic rings. At C = 0.35%, however, bacteria migrate as broad circular bands rather than sharp rings. These are growth/diffusion waves arising because of suppression of chemotaxis by the agar and have not been previously reported experimentally to our knowledge. For C = 0.4-0.5%, expanding colonies do not span the depth of the agar and develop pronounced front instabilities. The migration front speed is weakly dependent on agar concentration at C < 0.25%, but decreases sharply above this value. We discuss these observations in terms of an extended Keller-Segel model for which we derived novel transport parameter expressions accounting for perturbations of the chemotactic response by collisions with the agar. The model makes it possible to fit the observed front speed decay in the range C = 0.15-0.35%, and its solutions qualitatively reproduce the observed transition from chemotactic to growth/diffusion bands. We discuss the implications of our results for the study of bacteria in porous media and for the design of improved bacteriological chemotaxis assays.Comment: 28 pages, 5 figures. Published online at http://www.sciencedirect.com/science/article/pii/S000634951100721

    Transcriptional dysregulation of Interferome in experimental and human Multiple Sclerosis

    Get PDF
    Recent evidence indicates that single multiple sclerosis (MS) susceptibility genes involved in interferon (IFN) signaling display altered transcript levels in peripheral blood of untreated MS subjects, suggesting that responsiveness to endogenous IFN is dysregulated during neuroinflammation. To prove this hypothesis we exploited the systematic collection of IFN regulated genes (IRG) provided by the Interferome database and mapped Interferome changes in experimental and human MS. Indeed, central nervous system tissue and encephalitogenic CD4 T cells during experimental autoimmune encephalomyelitis were characterized by massive changes in Interferome transcription. Further, the analysis of almost 500 human blood transcriptomes showed that (i) several IRG changed expression at distinct MS stages with a core of 21 transcripts concordantly dysregulated in all MS forms compared with healthy subjects; (ii) 100 differentially expressed IRG were validated in independent case-control cohorts; and (iii) 53 out of 100 dysregulated IRG were targeted by IFN-beta treatment in vivo. Finally, ex vivo and in vitro experiments established that IFN-beta administration modulated expression of two IRG, ARRB1 and CHP1, in immune cells. Our study confirms the impairment of Interferome in experimental and human MS, and describes IRG signatures at distinct disease stages which can represent novel therapeutic targets in MS
    • …
    corecore