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Abstract
The Eastern Italian Alps (South Tyrol) is a connection area between continental Italy and the northern Alps. Various local 
factors, such as the heterogeneous environment, complex historical events, and different mobility patterns, may have influ-
enced the genetic makeup of early medieval alpine groups. However, no ancient genetic data from these groups are currently 
available. This study provides a first picture of the ancient mitochondrial DNA (mtDNA) diversity of alpine groups from 
four locations in South Tyrol (Adige, Isarco, Venosta, and Merano). In total, 94 ancient mitogenomes of individuals (dated 
from 400 to 1100AD) were reconstructed by shotgun sequencing and a mtDNA capture approach. Moreover, stable isotope 
ratios (δ13C, δ15N, δ34S) were analyzed in a subset of 32 individuals. The results indicate different mtDNA haplogroup 
distributions among the alpine locations and the presence of rare lineages besides a possible maternal relatedness between 
individuals buried in the same and in diverse archaeological contexts. The study also shows differences in the genetic and 
mobility patterns (δ34S) between individuals from the central and north-eastern parts (Adige, Merano, Isarco) and those from 
the north-western part of South Tyrol (Venosta). These results suggest genetic exchanges with allochthonous people in the 
first group probably linked to high mobility and to geomorphological, historical, and socio-cultural factors. Comparisons 
extended to present-day alpine populations also suggested maternal genetic continuity in this alpine area. Finally, stable 
isotope (δ13C, δ15N, δ34S) data provided further support for regional differences in the diet of past alpine groups possibly 
linked to altitude and/or social status.
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Introduction

Ancient DNA studies have highlighted key stages of the 
genetic history of European populations by showing major 
changes and turnover of the genetic lineages over time 
(Brandt et al. 2013; Lazaridis et al. 2014; Gamba et al. 2014; 
Margaryan et al. 2017; Mathieson et al. 2018; Furtwängler 

et al. 2020). These studies have been conducted mostly on a 
macroregional scale and have mainly regarded ancient indi-
viduals that were geographically and temporally dispersed. 
Therefore, there have been very few ancient genetic stud-
ies carried out on a micro-geographic scale in Europe (e.g., 
Mittnik et al. 2019) that can highlight groups or individuals 
with particular genetic traits that may elude large-scale stud-
ies. Moreover, studies focused on ancient genetic diversity 
from Italy remain limited (Amorim et al. 2018; Antonio 
et al. 2019; Marcus et al. 2020; Saupe et al. 2021; Posth 
et al. 2021), especially from the Italian alpine area (Ermini 
et al. 2008; Keller et al. 2012; Fu et al. 2016) which has 
been an important connection between Mediterranean and 
the northern Alps since Prehistory.

This study focused on early medieval individuals from a 
region in the Eastern Italian Alps (South Tyrol). Located on 
the southern slopes of the Alps, South Tyrol (Fig. 1) has a 
heterogeneous environment with various geographic zones 
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and altitudes (from ~ 200 in the Adige Valley to ~ 3900 m 
above sea level in the Venosta Valley) (Winckler 2012). Its 
complex territory is characterized mainly by mountain areas 
crossed by mountain passes (e.g., Brennero, Resia) but also 
by wide passageways (valley floors), features which may 
have influenced human mobility. Additionally, starting from 
the Roman Period (approx. from the first century BC to the 
fourth century AD in this area) and during the Early Middle 
Ages, this alpine territory was characterized by a complex 
communication network with connections not only to the 
Adriatic coast and the Po Valley, but also to central Europe 
along the Danube (Pesavento Mattioli 2000; Marzatico and 
Migliario 2011), thus favoring population movements, trad-
ing, and cultural exchanges.

At that time, the communities living in this area were 
involved in complex historical events. Indeed, after a long 
period of political stability and socio-cultural homogene-
ity of alpine groups under the Romans (“Romanization” 
process, Buchi 2000), local archaeological evidence sug-
gests that from the sixth century AD, the societies changed. 

Various cultural-political groups (e.g., Langobards, Baiu-
vars, Franks, Alemannic) contended the territory, marking 
the decline of the Roman political organization (Giostra and 
Lusuardi Siena 2004; Haas-Gebhard 2004; Heitmeier 2005; 
Cavada 2016). Thus, a cultural “Germanization” process by 
allochthonous people (barbari) of local Romanized groups 
took place (Albertoni 2005; Gasparri and La Rocca 2013), 
which involved cultural aspects, such as funerary customs, 
indicating the coexistence in the territory of possible differ-
ent cultural groups (Supplementary Information).

So far, only stable isotope data (δ13C, δ15N, and δ34S) 
from early medieval alpine individuals are available (Paladin 
et al. 2020). The study clearly showed local-scale differences 
in stable isotope ratios among groups from different valleys 
in South Tyrol. The results indicated diverse subsistence 
strategies with a mixed nutritional basis of C3/C4 plants 
(e.g., wheat and millet) with a higher intake of C4 plants at 
lower altitudes (Adige Valley), and a primarily terrestrial 
diet (high δ15N ratios) with individuals living at higher alti-
tudes showing greater access to animal protein (e.g., meat, 

Fig. 1   Geographic distribution of the ancient samples from South 
Tyrol analyzed in this study. Violet square = Adige Valley. Sites: 
(1) Montagna Pinzano (Montan, Pinzon), (2) Appiano San Paolo 
Castelvecchio (Eppan, St. Paul Altenburg), (3) Terlano (Terlan), (4) 
Nalles Gebreid (Nals Gebreid). Yellow circle = Merano Basin. Sites: 
(5) Maia Bassa (Untermais), (6) Castel Tirolo (Schloss Tirol). Red 
rhombus = Isarco Valley. Sites: (7) Sabiona (Säben), (8) Bressanone 

Elvas Necropoli 17 (Brixen, Elvas). Green triangle = Venosta Val-
ley. Sites: (9) Tanas (St. Peter’s path), (10) Malles Maso Pauli (Mals, 
Paulihof)), (11) Malles Burgusio St. Stefano (Mals, St. Stephan ob 
Burgeis. See Table SI1 for more details on the number of individuals 
analyzed for locations and archaelogical sites. The map was created 
using the « ESRI ARC GIS Desktop» (https://​deskt​op.​arcgis.​com/​en/)

https://desktop.arcgis.com/en/
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dairy products). Furthermore, the study reported different 
mobility patterns with greater mobility (higher δ34S ratios) 
in groups living at lower altitudes, although nutritional and 
geological factors (i.e., drinking of water enriched in sulfur, 
freshwater fish) may also have influenced this pattern (Pala-
din et al. 2020).

The present study intends to provide a first picture of the 
mitochondrial genetic diversity (mtDNA) of early medi-
eval individuals from the Eastern Italian Alps. More spe-
cifically, our questions were as follows: (i) Are the groups 
from various locations in South Tyrol which showed dif-
ferences in funerary culture, mobility patter, and subsist-
ence strategies also genetically differentiated? (ii) Are there 
differences in the genetic relationships between the various 
alpine groups and other European medieval individuals? In 
addition, we explored the genetic links between the ancient 
alpine groups and present-day populations, including those 
within the same region and beyond. To do that, the complete 
ancient mtDNA of 94 individuals mostly dated to the Early 
Middle Ages (400–1100 AD) (Table SI1 and Table SM1A) 
were reconstructed by using both shotgun sequencing and 
a capture approach. The specimens were recovered from 11 
closely located archaeological sites, which were distributed 
in three main valleys (Adige, Isarco, and Venosta) and in one 
basin (Merano) in South Tyrol (Fig. 1 and SI).

In order to gain further insights into the mobility patterns 
and diet of these alpine groups, a subset of 32 individuals 
underwent stable isotope analyses (δ13C, δ15N, and δ34S) 
and the results were combined with already available data 
(Paladin et al. 2020) for a total of 72 individuals.

Materials and methods

Genetic investigation

Sample processing and sequencing

In order to evaluate the skeletal representativity and state 
of preservation of the human remains as well as to estimate 
the individual sex and age at death (for methods, see Pala-
din et al. (2020), the human remains were anthropologically 
investigated at the Anthropology Laboratory of the Institute 
for Mummy Studies of Eurac Research in Bolzano.

Due to the uncertainty or lack of radiocarbon dating of 
human remains from two sites (Burgusio St. Stefano and 
Sabiona), six samples were analyzed for 14C measurements 
using an external service (Curt-Engelhorn-Zentrum Archäo-
metrie gGmbH D6, Mannheim) (see Table SM1B and Sup-
plementary Information for more details).

A total of 104 pars petrosa (PP) were selected for 
genetic investigation. After photographic documentation, 

around ~ 150 mg of powered bone was collected from the 
inner part of the PP by using a drill (Pinhasi et al. 2015) in 
a dedicated pre-PCR area of the ancient DNA laboratory 
in Bolzano and following all the strict rules required for 
ancient DNA analyses. Particular attention was paid during 
this sampling procedure in order to preserve the PP as much 
as possible, which was isolated or still attached to the skull, 
in order to make the samples available for further possible 
scientific investigations.

DNA samples were extracted using a purification method 
based on silica columns (Gamba et al. 2014) and Paired-End 
(PE) genomic libraries were constructed (Meyer and Kircher 
2010), and sent to an external company (Macrogen) for shot-
gun sequencing (100 bp PE HiSeq2500 and 150 bp HiSeq-X 
systems, Illumina). Almost half of the samples (50), which 
showed less than 94% of mtDNA positions covered after 
bioinformatic analyses, were further enriched for the mito-
chondrial DNA using myBaits Mito, Global Panel (Arbor 
Biosciences), and the enriched libraries were sequenced by 
using the above-mentioned Illumina platforms.

The recovery, sampling, and all the analyses performed 
in this study on the human and faunal remains have been 
authorized by the competent authority (13.2 Ufficio Beni 
archeologici, Provincia Autonoma di Bolzano-Alto Adige).

Bioinformatic and statistical analyses

Paired-end reads were trimmed and merged by PEAR 
(Zhang et al. 2014) if they overlapped by at least 25 bp 
and with a minimum length of the assembled sequences of 
25. The QualityFilterFastQ.py script (Kircher 2012) was 
applied to eliminate reads with 5 bases below the quality 
threshold of 15. The reads were then aligned to the Genome 
Reference Consortium Human Build 37 (GRCh37/hg19) 
and to the revised Cambridge Reference Sequence (rCRS) 
(Andrews et al. 1999) with BWA (Li and Durbin 2010) 
with minimum mapping quality set to 25. Duplicates were 
removed by using Dedup (Peltzer et al. 2016). Damage pat-
terns among the ancient reads were tracked and quantified 
(e.g., fragmentation and misincorporation patterns) by using 
mapDamage (Jónsson et al. 2013). Contamination estimates 
as well as mtDNA consensus sequences were inferred by 
a probabilistic iterative method (Schmutzi, Renaud et al. 
2015). Fasta files were obtained from the “sample_final_
endo.log” file reconstructed by Schmutzi, using log2fasta 
resulted in mitogenomes where the reported alleles were 
covered at least 3 times with base quality (PHRED) and 
average mapping quality ≥ 30. Positions that did not sat-
isfy these criteria were reported as missing positions (see 
Table SM1).

Haplogroup assignment was carried out by using Hap-
logrep 2.4.0 (Kloss-Brandstätter et al. 2011) and further 
checked by using Haplofind (Vianello et al. 2013), both 
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based on the phylogenetic tree of global human mitochon-
drial DNA variation (version 17) (van Oven and Kayser 
2009). Polymorphic sites were checked through visual 
inspection (particular attention was paid to mutations 
that have been identified as global, missing, or private; 
Table SM1A).

For the comparative analyses, we focused on mitoge-
nomes from ancient samples from Europe dated from ~ 400 
to 1150 AD, except for one from the Roman period from 
southern Italy (1–400 AD; Emery et al. 2018) (no data are 
available on alpine or northern Italian samples dated to 
the Roman Period) (Table SM4). Moreover, we used only 
groups reported in the original publications with sample 
sizes ≥ 7. Depending on availability in the literature, we 
used either Fasta files or raw data (fastq or bam files). The 
latter were then processed to extract mtDNA reads follow-
ing the pipeline used in this study and described above. 
Thus, we excluded mtDNA Fasta sequences with too many 
uncertain positions in order to estimate reliable Fst val-
ues. Additionally, whole genome data from 16 present-
day populations were retrieved from Batini et al. (2017). 
Finally, we used data from the hypervariable region 1 of 
the mtDNA (HVRI, from position 16,033 to 16,383) from 
19 present-day alpine populations (see Table SM5 for more 
details and references).

Haplotype diversity and pairwise genetic distances 
(Fst, Reynolds’ linearized distance) (Reynolds et  al. 
1983) were estimated using the Arlequin software 
(v.3.5.2.2) (Excoffier and Lischer 2010) and statistical 
significance of Fst values was estimated using 10,000 
permutations. A multidimensional-scaling (MDS) plot 
of pairwise Fst values was computed with the cmdscale 
function and plotted with ggplot in R 4.0.3 (R Core 
Team 2021; Kassambara and Mundt, 2016). A phylo-
genetic network of the alpine haplogroup H was con-
structed using the median Joining method implemented 
in the Network program (v.10.1) (https://​www.​fluxus-​
engin​eering.​com) (Bandelt et al. 1999) using the default 
parameters Ɛ = 0. Forty-six early medieval alpine indi-
viduals were used, with the exclusion of sample 2736 due 
to uncertainty in the mutation at position 3010, which 
defines haplogroup H1 (see Table SM1).

Isotope investigation

Analytical methods and statistical analyses

Osteological human samples (from the cranium or femur, 
as a second choice) from a subset of 32 early medieval 
individuals and 14 faunal bone samples were collected 
for carbon (13C/12C, δ13C), nitrogen (15N/14N, δ15N), 

and sulfur (34S/32S, δ34S) stable isotope analyses, at the 
Anthropology Laboratory of Eurac Research of Bolzano 
(Italy). Good-quality data from this study were combined 
with data from Paladin et al. (2020), reaching a total of 72 
human (out of the 94 analyzed for mtDNA) and 43 fau-
nal samples, which were used for the statistical analyses. 
Both human and faunal samples from the sites of Maia 
Bassa (Merano Basin) and Sabiona (Isarco Valley) were 
analyzed for the first time in this study (Table SM1B and 
Table SM9).

The faunal samples from different species were col-
lected, after anatomical and taxonomical identification 
according to Schmid (1972) and Barone (1986) at the 
Archaeological Office of the Autonomous Province of 
Bolzano. These were analyzed to reconstruct the local 
trophic levels among humans and the different faunal spe-
cies. The δ34S mean and standard deviation (SD) of the 
domesticated animals grouped per valley were used as 
local baselines.

The bone collagen extractions were performed at the 
laboratory of the Institute of Forensic Medicine of the 
University of Bern (Switzerland), following the standard 
laboratory protocol for acid–base extractions based on 
the studies of Longin (1971) and Ambrose (1990). More 
details are reported in Paladin et al. (2020). The δ13C, 
δ15N, and δ34S analyses were measured by isotope ratio 
mass spectrometry (IRMS), at Isolab GmbH of Schweiten-
kirchen in Germany. The mean result of three measure-
ments was calculated and used for the analyses. Results 
are reported in δ-notation in units of per mil (‰) with 
reference to the international standards (VPDB for carbon, 
AIR for nitrogen and V-CDT for sulfur) (Schoeninger and 
DeNiro 1984; Fry 2006). In addition, the laboratory inter-
nal standard STD R (collagen from cowhide, EU project 
TRACE) was reported in this work. For δ13C, the analyti-
cal error was less than ± 0.1‰, for δ15N ± 0.2‰, and for 
δ34S ± 0.3‰. The samples were of good quality when %C 
was in the range of 30–47%, %N in the range of 11–17.3%, 
and %S in the range of 0.15–0.35% (Ambrose 1990, 1993; 
Van Klinken 1999; Nehlich and Richards 2009). The anal-
yses were completed by using IBM® SPSS® Statistics 
25 to test the data distribution (Shapiro–Wilk test) and 
to detect the extreme (values with more/less than × 3 the 
interquartile range, 3 × IQR) outliers, according to the 
locations, to be then excluded from the statistical tests. 
To determine significant differences between groups, the 
parametric tests (normal distributions) such as one-way 
ANOVA with a post hoc Tukey test and the non-parametric 
Kruskal–Wallis test with pairwise comparisons (non-nor-
mal distributions) were applied. A p value below 0.05 was 
considered significant.

https://www.fluxus-engineering.com
https://www.fluxus-engineering.com
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Results

Genetic investigation

Data quality and authentication of aDNA

Genomic libraries constructed using DNA extracts from 
pars petrosa samples (104 individuals) were tested for 
their content of endogenous human DNA using shotgun 
sequencing. After bioinformatic analyses of the paired-
end DNA sequencing reads, seven samples were excluded 
due to their low content of endogenous human DNA. Of 
the remaining individuals (97), almost half of the sam-
ples (47) showed sufficient coverage (approximately 7- to 
55-fold) of the mitogenome. The other 50 samples were 
further enriched for mtDNA by using a hybridization 
capture approach. This resulted in average coverage val-
ues from 11- to 3721-fold (Table SM1A). The mtDNA 
sequence reads of all individuals were highly fragmented 
and showed characteristic postmortem damage patterns for 
ancient DNA (Table SM1A) (Orlando et al. 2015). Low 
contamination rates from modern human DNA (aver-
age values from 0 to 4%) were estimated for most of the 
samples (Renaud et al. 2015), except for three individu-
als (average from 7 to 16%) that were therefore excluded 
from the subsequent analyses. Consensus sequences for the 
remaining 94 samples were reconstructed as described in 
detail in the “Materials and methods” section.

Mitogenome diversity in the early medieval eastern Alps

We successfully reconstructed the mitogenome of 94 early 
medieval samples from South Tyrol, which comprise 86 
different haplotypes (Table SM1A). Haplotype diversity in 
the four ancient alpine groups varied from 1.000 ± 0.024 
in the Merano Basin to 0.978 ± 0.054 in the Adige Valley 
with same intermediate values in the other two locations, 
0.996 ± 0.006 and 0.996 ± 0.013 in the Isarco and Venosta, 
respectively. Present-day population from South Tyrol 
also show a similar haplotype diversity of 0.995 ± 0.0044 
(Table SM2).

Identical haplotypes were found within the same loca-
tion and archaeological site (haplotypes from 2 to 5; 
Table SM3) or among different locations and archaeologi-
cal contexts (haplotypes 1 and 6). Moreover, one more 
possible shared haplotype was detected in the Isarco Val-
ley (haplotype 7), although two positions cannot be deter-
mined based on the quality criteria used in this study and 
remain uncertain.

Mitochondrial haplogroups were assigned to all sam-
ples (average rank of 0.94; Table SM1A). Overall, a high 

occurrence of the macro haplogroup H, which accounts for 
half of the total alpine mitogenomes (50%), was found with 
differences among groups from different locations since its 
frequency ranges from 20% (Adige) to 62.5% (Venosta) 
and it showed high diversity with several different H-sub 
haplogroups (Fig. SI9). Other frequent haplogroups are 
U (14.9%), T (9.6%), J and K (7.5%), HV (3.2%), and V 
(2.1%), while more rare lineages (~ 1%) are I, M, R, N, and 
W. Some of these lineages were found only in one location 
such as Adige Valley W (10%), Merano Basin M (7%), 
Isarco Valley R (2%) and V (4%), and, lastly, Venosta I and 
N (4%) (Figs. SI7 and SI8). When compared to extended 
datasets of ancient mitogenomes (AmtDB database, 
from Ehler et al. (2019), update 2021–10-13; Dataset_ 
v50.0_1240K from David Reich Lab), some sub-lineages 
of haplogroup H (H11a5, H31, H75, H80) but also line-
ages of different haplogroups (HV4a2b, K1c1a, U8a1a1a1, 
and M1a3) present in the Alps have not been found in 
other specimens, while other lineages (e.g., H11a2a2, H39, 
T2b1, T2b24, T2k, J1c3c, K1b1c) were found only in few 
other ancient samples.

Comparison with other early medieval groups 
and present‑day populations

To visualize the genetic relationships between our sam-
ples and other ancient and present-day populations, we 
performed a multidimensional-scaling (MDS) plot of the 
pairwise genetic distances (Fst values) (Fig. 2). Early medi-
eval alpine groups from Adige Valley (AAD), Merano Basin 
(AME), and to a lesser extent Isarco Valley (AIS) fall into a 
main cluster together with most of the other ancient groups 
from Italy (ETR, VAG, VEN), Bavaria (ABA), Hungary 
(AHU, H2L), and Romania (CAP) with the exclusion of 
five outliers: the Alemannic from Niederstotzingen (NIE), 
Longobards from north Italy (LIC), Visigoth from Iberia 
(VS1), and finally two Longobard groups from Hungary and 
the Czech Republic (H1L and CZE, respectively), and all 
present-day populations used for the comparison. On the 
other hand, early medieval alpine group from the Venosta 
Valley (AVE) is separated from this main cluster (Fig. 2). 
Fst values estimated for the entire dataset ranged from 0 to 
0.160. The highest Fst value was observed among the CZE 
and VS1, but it should be taken with some caution given the 
small sample size of these groups (Table SM4). Notably, 
the Adige Valley (AAD) has one of the higher Fst values 
estimated for the whole dataset with the nearby Venosta Val-
ley (AVE) (Fst = 0.023), followed only by the outliers from 
Collegno, Longobards (LIC) (Fst = 0.041) and the Czech 
Republic (CZE) (Fst = 0.084; Table SM6 and Table SM7).

The genetic relationship among ancient groups 
from the Alps and present-day populations was further 
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investigated using available low-resolution mtDNA data 
(hypervariable region 1, HVR1) from populations from 
the same alpine territory. The dataset includes present-
day populations from three of the four locations consid-
ered in this study (Adige, Isarco, and Venosta Valleys) 
and other alpine populations from the surrounding area 
(Table SM5). The MDS plot of the Fst genetic distances 
(Table SM8 and Fig. 3) shows a principal cluster com-
posed of early medieval alpine groups from all four loca-
tions and most of present-day populations including the 
alpine ones with the exception of modern Isarco Valley 
(VIS) and other two contemporary populations from 
South Tyrol (from Pusteria Valley and Ladins from Gar-
dena Valley), which behave as outliers in the plot (Fst 
values in the total dataset from 0 to 0.103). Indeed, Fst 
values estimated among the present-day population of 
Isarco and the early medieval group from the same val-
ley are high (Fst = 0.042) if compared to low Fst values 
estimated among ancient and modern populations from 
the other alpine locations (Fst values ranged from 0 to 
0.010) (Table SM8).

Stable isotope ratio analysis

Data quality and stable isotope ratios of the early medieval 
alpine groups

All the human samples (32) analyzed in the present study yield 
good-quality collagen for δ13C, δ15N, and δ34S stable isotope 
ratios as well as for most of the faunal remains (13/14) from 
the same archaeological sites and with the same chronology 
(Table SM1B and Table SM9). The descriptive statistics of 
both human and faunal remains are presented in Table SM10, 
while the trophic level shifts obtained between faunal and 
human δ13C and δ15N ratios are presented in Table SM11.

The plot in Fig. 4 compares the human and faunal δ13C and 
δ15N stable isotope ratios. In terms of human data, the carbon 
values showed that the group of Adige Valley had statistically 
significant enriched δ13C values (mean − 17.44 ± 0.84‰) com-
pared to the other locations (Merano Basin − 18.55 ± 1.25‰, 
Isarco − 19.04 ± 0.65‰, and Venosta − 19.19 ± 0.55‰) 
(Table SM10). Extreme outliers for δ13C were detected in both 

Fig. 2   Multidimensional-scaling (MDS) plot of Fst pairwise genetic 
distances in the alpine samples divided according to location and in 
another 13 ancient groups from Europe and 16 present-day popula-
tions. Symbols and colors: ancient samples from present study: vio-
let square = Adige Valley, yellow circle = Merano Basin, red rhom-
bus = Isarco Valley, green triangle = Venosta Valley. Ancient groups 
from published data: open circles. Present-day populations: gray cir-
cle. Abbreviations, ancient: AAD = Adige; AIS = Isarco; AME = Mer-
ano; AVE = Venosta; CZE = Czech Republic; NIE = Niederstotzingen; 

ABA = Bavarians; AHU = Hungary; H1L = Hegyko; H2L = Szólád; 
LIC = Collegno; CAP = Capidava; VS1 and VS2 = Visigoths; 
ETR = Early Medieval_Central Italy; VEN = Venosa. Modern: 
MST = Modern South Tyrol; DEN = Danish; ENG = English; 
FRA = French; BAV = Bavaria; GRE = Greeks; HUN = Hungary; 
IRE = Irish; ITA = Italians; NET = Netherlands; NOR = Norwegians; 
ORK = Orkney; PAL = Palestinians; SER = Serbs; SPA = Spanish; 
TUR = Turks (refer to Table SM4 for more details)
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Isarco (BEN2b, BEN28, BEN45) and Venosta (TA4) Valleys 
(Fig. 4; Table SM1B).

Regarding the nitrogen values, the group of 
Venosta Valley exhibited the most enriched δ15N mean 
value (+ 10.62 ± 0.71‰), followed by Isarco Val-
ley (+ 10.36 ± 1.11‰), compared to the groups of the 
other locations (Adige + 10.01 ± 0.58‰ and Merano 
Basin + 9.72 ± 0.84‰). However, the Kruskal–Wallis test con-
firmed significant differences only for nitrogen values between 
Venosta and Merano (p = 0.001) (Table SM12). Extreme out-
liers can be observed for individuals from the Merano Basin 
(TCT10 and TCT27 from Castel Tirolo) and the Isarco Valley 
(BEN45 from Elvas Bressanone; Fig. 4, Table SM1B).

Figure 5 displays the mean δ34S values of the humans from 
the different locations in relation to the general δ34S faunal 
baseline (n = 43, mean + 6.65 ± 2.14‰) and to the baseline 
per location (n = 8 Adige: + 7.49 ± 3.27‰; n = 7 Merano 
Basin: + 5.22 ± 0.99‰; n = 9 Isarco + 5.91 ± 1.38‰; and 
n = 6 Venosta + 6.82 ± 1.37‰). The plot shows statistically 
supported differences (Table SM12) among the various 

locations in South Tyrol. Most significant are the differ-
ences between the groups of the Adige (highest δ34S vari-
ation, mean + 8.67 ± 2.28‰) and Venosta Valley (lowest 
δ34S variation, mean + 5.65 ± 0.63‰). Additionally, the plot 
indicates that the sulfur values of some individuals from 
the Merano Basin (TCT27, TCT-US186, Castel Tirolo), 
Isarco Valley (BEN11 and BEN2b, BEN29 and BEN45 
Elvas Bressanone; SK74 Sabiona), and Venosta Valley 
(BSS-US158 and MHP2, from Burgusio St. Stefano and 
Malles Maso Pauli, respectively) differed from the local 
faunal baseline.

Discussion

Mitochondrial DNA diversity patterns in early 
medieval individuals from the Eastern Italian Alps

Overall, the 94 early medieval alpine samples show high 
variation in terms of number of different haplotypes (~ 92%). 

Fig. 3   Multidimensional-scaling (MDS) plot of Fst pairwise genetic 
distances (mtDNA hypervariable region-1 from positions 16,033 
to 16,383) among early medieval alpine groups and 35 present-day 
populations, including 19 from the Eastern Italian Alps. Symbols and 
colors. Ancient samples from present study: violet square = Adige 
Valley, yellow circle = Merano Basin, red rhombus = Isarco Val-
ley, green triangle = Venosta Valley. Present-day populations from 
the alpine region: light blue dot; other present-day populations: gray 
dot. Abbreviations: AAD = Ancient Adige; ADI = Modern Adige; 
AIS = Ancient Isarco; AME = Ancient Merano; AVE = Ancient 
Venosta; AUS = Austria; BA1 = Badia, Ladin; BA2 = Badia, Ladin; 

FAS = Fassa, Ladin; FER = Fersina; FIE = Fiemme; GIU = Giudicarie; 
MST = Modern South Tyrol; NON = non-valley; PRI = Primiero Val-
ley; SOL = Sole Valley; VA1 = Upper Venosta Valley 1; VA2 = Upper 
Venosta Valley 2; VB1 = Lower Venosta 1; VB2 = Lower Venosta 
2; VGA = Gardena Valley, Ladin; VIS = Isarco Valley; VPU = Pus-
teria Valley; DEN = Danish; ENG = English; FRA = French; 
BAV = Bavaria; GRE = Greeks; HUN = Hungary; IRE = Irish; 
ITA = Italians; NET = Netherlands; NOR = Norwegians; ORK = Ork-
ney; PAL = Palestinians; SER = Serbs; SPA = Spanish; TUR = Turks 
(refer to Table SM5 for more details)
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The haplotype diversity in the four ancient alpine groups 
is also high, with no significant differences among groups 
and similar to the haplotype diversity found in present-day 
population from South Tyrol.

The haplotype identity (Table SM3) of individuals buried 
within the same archaeological sites suggested possible close 
maternal relatedness such as the case of those from the site 
of Sabiona (Isarco) (SK63 and SK100; SK212 and SK95; 
SK162 and SK78). Interestingly, most of these individuals 
were buried with grave goods attributed to a possible com-
mon cultural Romanized group (Bierbrauer et al. 2015). The 
other two adults buried in the same site of Appiano, S. Paolo 
in the Adige Valley (AP-AL4 and AP-AL5), were found in 
two single graves located next to each other. Moreover, a 
close genetic relationship of the two adults from Burgusio 
St. Stefano is likely, as both were buried in the same grave 
(Supplementary Information) (Reuß 2016). But, matching 
haplotypes from different archaeological sites and locations 
are more difficult to interpret.

The early medieval alpine individuals analyzed in this 
study also show a high heterogeneity of the mtDNA haplo-
groups with several rare sub-lineages. According to database 
searches of whole ancient mtDNA, eight lineages (H11a5, 
H31, H75 and H80, HV4a2b, K1c1a, U8a1a1a1, and M1a3a) 
are virtually restricted to the eastern Italian Alps while the 
majority of haplogroups are widespread in other parts of 
Europe and the Middle East. A different distribution of 

lineages in the alpine territory emerged such as in the case 
of haplogroup H which is present with a peak in the north-
western part of the territory with a frequency similar to 
that observed in another early medieval group from north 
Italy (Longobards from Collegno, ~ 61%; Vai et al. 2019). 
Interpopulation analyses (Fst genetic distances) further 
highlighted maternal genetic differentiation among speci-
mens from different locations from South Tyrol. Indeed, 
differences were observed between early medieval individu-
als from the central and north-eastern part of South Tyrol 
(Adige Valley and Merano Basin, Isarco Valley) and those 
from the valley situated in the north-western part of the ter-
ritory (Venosta Valley). The most pronounced genetic differ-
ences were detected among specimens buried in the archaeo-
logical sites of the Adige and Venosta Valleys located at 
the two extreme altitudes (~ 335 m above sea level and on 
average ~ 1240 m above sea level, respectively). Moreover, 
the comparison extended to other specimens from Europe 
from around the same time period evidenced a maternal 
genetic affinity between early medieval alpine groups from 
the central and north-eastern area of South Tyrol and early 
medieval Europeans of various origins and cultures but the 
same was not evidenced for individuals from the Venosta 
Valley. These results suggested possible genetic exchange 
with allochthonous people especially for individuals from 
the central and north-eastern part of South Tyrol (Adige Val-
ley and Merano Basin, Isarco Valley). Particularly for the 

Fig. 4   δ13C and δ15N ratios of human (N = 72) and faunal samples (N = 43), including average values and standard deviations. The extreme outli-
ers are indicated (italics = outliers for δ13C, underlined = outliers for δ15N). The animals’ symbols are from PowerPoint
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Adige Valley, this is to be expected given its strategic posi-
tion and the presence of the Adige River, which has always 
provided communication routes that have favored population 
movements, cultural exchange, and trading (Lanzinger et al. 
2001). Moreover, regarding the Isarco Valley, especially 
starting from the second century AD onwards, it became 
the most important and best maintained road of the complex 
communication routes present in the alpine region which 
date back to Roman times (Pesavento Mattioli 2000). On the 
other hand, while in the first century AD, the Venosta Val-
ley was crossed by one of the fundamental axes of this road 
system (Via Claudia Augusta inaugurated in 46 AD), this 
route lost its importance at a later date, leading to a certain 
isolation of this valley compared to the others. These cir-
cumstances may have favored mobility and genetic exchange 
more in the central and north-east of South Tyrol than in the 
Venosta Valley in the north-west. Additionally, even if the 
allochthonous and the Roman grave goods are often difficult 
to distinguish (Dal Ri and Rizzi 1995; La Rocca 2004, 2009; 
Albertoni 2005; Gasparri and La Rocca 2013), the mate-
rial culture points toward cultural admixture, especially in 
the Isarco Valley (Sabiona and Bressanone Elvas). A few 
more funerary goods have also been retrieved in the other 
locations (Supplementary Information). However, also the 
effect of the genetic drift which could be particularly strong 
in small and isolated populations such as those from the 
mountainous areas may explain the genetic differentiation of 

individuals from the Venosta Valley compared to those from 
the other alpine locations and from Europe. An additional 
outcome of the study suggests possible matrilinear genetic 
continuity in the territory of the Eastern Italian Alps, similar 
to what has been observed in other areas of Italy (e.g., Posth 
et al. 2021). In fact, comparisons with present-day popula-
tions from Europe (whole mtDNA data) and from the same 
alpine territory and valleys (Adige, Isarco, and Venosta; 
HVR-1 data) indicate broad genetic affinity between most 
early medieval alpine groups and modern populations (e.g., 
ancient and modern Venosta, Fst = 0.004–0.005). An excep-
tion might be the Isarco Valley (Fst = 0.04), as the popula-
tion living in this area today is highly different genetically 
from the people who were buried in this valley during the 
Early Middle Ages suggesting maternal discontinuity in this 
area. A significantly high mtDNA genetic differentiation of 
modern-day populations from this location compared to 
the other alpine populations has previously been described 
(Pichler et al. 2006) and could be explained by the effect of 
genetic drift. Finally, it should be noted that the early medie-
val group from Venosta shows a genetic similarity to modern 
populations especially when the comparison is extended to 
present-day alpine populations, suggesting a closer genetic 
affinity to these populations. However, more mitogenomes 
from modern alpine populations would be necessary to bet-
ter investigate the genetic relationship between early medi-
eval and modern Venosta.

Fig. 5   δ34S ratios of all human samples grouped per locations and δ34S baselines based on faunal samples (dashed lines), including average val-
ues and standard deviations. Numbers in brackets represent the sample size
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Dietary and mobility variations of the early 
medieval alpine groups

The δ13C and δ15N stable isotopes reflect the plant and ani-
mal protein content in the diet (e.g., Schwarcz and Schoe-
ninger 1991; Ambrose 1993; Van Klinken et al. 2002; Lösch 
et al. 2006). Additionally, the analysis of δ34S helps identify 
proportions of aquatic (marine/freshwater fish) and terres-
trial diets and, as it reflects the local geology, it also aims 
in the reconstruction of human mobility patterns (Richards 
et al. 2003; Vika 2009; Nehlich et al. 2010; Nehlich 2015).

Differences in the dietary habits of the early medieval 
individuals from the Eastern Italian Alps were confirmed 
and extended in the current study.

Indeed, the group of the Adige Valley had a diet with a 
greater intake of C4 plants, most likely linked to the low 
altitude (mean altitude 348 m.a.s.l.), and therefore a suitable 
habitat for C4 crop cultivation (e.g., millet and sorghum), 
which require an abundant water supply and warmer tem-
peratures to grow (Ehleringer et al. 1991, 2002). A C4 plant 
consumption has already been described in early medieval 
northern Italy (e.g., Paladin 2021; Reitsema and Vercellotti 
2012; Castiglioni and Rottoli 2013; Iacumin et al. 2014; Laf-
franchi et al. 2020; Marinato 2017), in Germany (Wahl et al. 
2014), and in Hungary (Amorim et al. 2018). Differently, a 
subsistence strategy mainly based on crop cultivations of ter-
restrial C3 plants (e.g., wheat) was found for the alpine indi-
viduals buried in the Merano Basin and Isarco and Venosta 
Valleys similarly to other European early medieval groups 
from northern Italy (Collegno; Amorim et al. 2018), Hun-
gary (Amorim et al. 2018), and Austria (North Tyrol; McG-
lynn 2007). Additionally, the nitrogen stable isotope ratio 
of the individuals of the Merano Basin indicates a diet that 
was poor in animal protein and/or a possible consumption of 
N-fixating plants, such as pulses that lead to lower nitrogen 
ratios (Bogaard et al., 2013; Lösch et al. 2014; Siebke et al. 
2020). On the other hand, in the group of the Isarco Valley, 
δ15N ratios suggest different subsistence strategies having 
an economy predominantly based on meat production and 
dairy products, similar to the group from the Venosta Valley, 
which also had most likely greater access to animal proteins. 
The greater consumption of animal proteins in the diet could 
also be indicative of high social status (e.g., Le Huray and 
Schutkowski 2005; Reitsema and Vercellotti 2012), and this 
would also be suggested by the rich burials with grave goods 
found particularly in some of the cemeteries present in the 
Isarco Valley (Supplementary Information). However, it 
cannot be excluded that the enriched nitrogen values were 
also due to other factors, including the manuring effect that 
increases the amount of nitrogen in the soil and in plants. 
Some individuals differ from these general patterns; indeed, 
the outliers for δ13C in Isarco (BEN2b, BEN28) and Venosta 
(TA4) had a stronger C4 intake in their diet compared to the 

other individuals buried in the same valleys. This could sug-
gest diverse dietary habits in terms of plant consumption, but 
also a different origin from the burial site (i.e., from lower 
altitudes). Other outliers for δ15N in the Merano Basin and 
Isarco Valley include two subadults (TCT10 and BEN45), 
which display the highest nitrogen values likely due to a 
detectable signal of breastfeeding (e.g., Dupras and Tocheri 
2007; Bourbou et al. 2011; Beaumont et al., 2013; Stantis 
et al. 2019). Additionally, one adult female (TCT27) had the 
lowest δ15N value suggesting a possible diet with almost no 
or very little intake of animal proteins or it might be that the 
isotopic signature was influenced by the pathologies (e.g., 
Reitsema 2013) that afflicted this individual (Paladin 2021).

The present study also extended our understanding of the 
mobility patterns (based on δ34S ratios) involving the inves-
tigated alpine groups. Again, the most significant differences 
were observed between the groups located at the lower and 
highest altitudes (Adige and Venosta, respectively). In fact, 
we confirmed that the group of the Adige Valley is distin-
guished by the greatest δ34S variation in comparison to the 
other locations, followed by Isarco and Merano, which could 
be explained by a high mobility. In contrast, the group of 
the Venosta Valley shows the lowest mobility signal. This 
pattern is very similar to what we observe at a genetic level 
since Adige and Venosta are the most differentiated (one of 
the highest Fst value among these two alpine locations) and 
Venosta is different to most of the other groups considered 
for comparison.

The results additionally show several outliers (Fig. 5), espe-
cially from the Isarco Valley, having enriched (Isarco Valley: 
BEN2b Δ1.84‰, BEN11 Δ3.70‰, BEN29 Δ1.77‰, BEN45 
Δ1.56‰; SK74 Δ1.60‰) or depleted (Merano Basin: TCT27 
Δ2.17‰, TCT-US186 Δ1.78‰; Venosta Valley: MHP2: 
Δ2.50‰, BSS-US158: Δ1.38‰) δ34S values compared to 
the local faunal baseline, indicating the potentially non-local 
origin of these individuals with respect to their place of burial.

The distribution of mtDNA haplogroups in these possibly 
non-local individuals may provide further information and 
suggest a complex maternal genetic origin for some of them. 
For instance, the infant (BSS-US158, Venosta) carried the 
rare lineage H39 which it shares with one other early medi-
eval individual from Hungary (Pannonia; Vai et al. 2019) 
and which is present today especially in Finland and Sweden 
(e.g., Finnilä et al. 2001; Moilanen et al. 2003). Another 
interesting case regards the adult (possibly female) BEN28 
(Isarco) that carried the rare H1f haplogroup (plus muta-
tion T16093C), which indicates a possible maternal genetic 
connection with ancient Scandinavia (one Viking from Swe-
den; Margaryan et al. 2020) and present-day populations 
from Finland (e.g., Kiiskilä et al. 2019). Intriguingly, also 
a different nutritional basis in terms of plant consumption 
(stronger C4 intake) was observed for this individual com-
pared to those from the same alpine location.
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Conclusion

The mitochondrial DNA and δ34S analyses highlighted 
regional differences in terms of genetic relationships with 
allochthonous groups and mobility patterns among individu-
als from the central and north-eastern part of South Tyrol 
(Adige Valley, Merano Basin, and Isarco Valley) and those 
from the north-western part of the territory (Venosta Valley). 
More pronounced were those among ancient alpine individu-
als buried at the lowest (Adige, ~ 335 mamsl) and the highest 
(Venosta, on average ~ 1240 mamsl) altitudes, indicating that 
this factor, and the potentially greater isolation of the Venosta, 
may have played an important role in the genetic structure 
and mobility of these alpine groups. The differences observed 
could also be related to the geomorphology of the territory 
and to the road system present since Roman Times, which 
may have favored human mobility and genetic exchanges with 
allochthonous people more in the first (north-east) than in the 
second (north-west) group, particularly in the Isarco Valley 
as also indicated by cultural materials. Furthermore, the study 
suggested genetic continuity among early medieval groups 
and present-day populations in this alpine area but with some 
interesting exceptions (Isarco Valley).

Finally, different subsistence strategies were also detected 
(stable isotopes of δ13C, δ15N) indicating a diverse exploita-
tion of the territory in the various areas of South Tyrol, espe-
cially linked to environmental factors (e.g., altitudes) and/
or differences in the social status. The differences mainly 
concern the group from the Adige Valley (consumption of 
C4 plants) compared to groups from all other alpine loca-
tions (C3 plants) and those from Venosta and Isarco Valleys 
which displayed the most enriched δ15N values linked to a 
higher consumption of animal proteins.
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