26 research outputs found

    Role of NASA's SeaBASS Repository for the Legacy of the EXPORTS Field Biogeochemical Measurements

    Get PDF
    Role of NASA's SeaBASS repository for the legacy of the EXPORTS field biogeochemical measurements

    The Adsorption of Dissolved Organic Carbon onto Glass Fiber Filters and Its Effect on the Measurement of Particulate Organic Carbon: A Laboratory and Modeling Exercise

    Get PDF
    Particulate organic carbon (POC) represents a small portion of total carbon in the ocean. However, it plays a large role in the turnover of organic matter through the biological pump and other processes. Early on since the development of the POC measurement technique in the 1960s, it was known that dissolved organic carbon (DOC) adsorbs and is retained both on and in the filter. That retained DOC is measured as if it was part of the particulate fraction, an artifact that can cause significant overestimates of POC concentration. We set out to address the long-standing question of whether the magnitude of the DOC adsorption is affected by the quantity and quality of the dissolved organic matter in the sample. However, our results precluded an unequivocal answer to that question; nevertheless, the experimental data generated did allow us to develop and test predictive models that relate the mass of carbon adsorbed to the volume of sample filtered. The results indicate that the uptake of DOC can be predicted using an exponential model and that a saturation point is approached when approximately a half-liter of water is filtered. This model can be a valuable tool for correcting existing POC data sets that did not account for DOC adsorption. Nonetheless, this approach should not be regarded as a substitute for collecting in situ filter blanks in parallel with POC samples to properly correct for this artifact

    Imagining a Safe Water Space for Danube’s Future: Engaging stakeholders for the co-creation of a Safe Operating Space for the Danube basin

    Get PDF
    On the 23 November 2023, the SOS-Water project held the first stakeholder workshop for the Danube Basin case study. As water challenges increase worldwide, exacerbated by climate change, the SOS-Water project aims to establish a Safe Operating Space (SOS) for water resources, to ensure an adequate, sustainable and clean water supply for both human activities and natural ecosystems. Funded by the European Union's Horizon Europe Framework Programme, the project uses an integrated approach that combines modeling, monitoring, and stakeholder engagement, applied to four different case studies in Europe and beyond. The Danube River basin, known for its ecological and socio-economic diversity, is one of the selected case studies. The workshop convened key stakeholders from various freshwater-related institutions, promoting dialogue and collaboration to address the complex challenges that the basin is facing. During a day of interactive activities, stakeholders collectively identified values, objectives, and priorities essential for sustainable water management in both the entire Danube basin and the Danube Delta. Discussions underscored the need for integrated approaches that balance environmental conservation, socio-economic development, and climate adaptation. Key outcomes include the refinement of objective hierarchy maps that reflect the stakeholder input and priorities collected during the workshop. The next steps will be the development of specific indicators for the objectives. This is followed by the weighting of goals (i.e., objectives) to be achieved through further stakeholder engagement activities and workshops, towards a co-development of the Safe Operating Space for the Danube River basin

    PACE Technical Report Series, Volume 5: Mission Formulation Studies

    Get PDF
    This chapter summarizes the mission architecture for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, ranging from its scientific rationale to the history of its realized conception to itspresent-day organization and management. This volume in the PACE Technical Report series focuses ontrade studies that informed the formulation of the mission in its pre-Phase A (2014-2016; pre-formulation:define a viable and affordable concept) and Phase A (2016-2017; concept and technology development).With that in mind, this chapter serves to introduce the mission by providing: a brief summary of thescience drivers for the mission; a history of the direction of the mission to NASA's Goddard Space Flight Center (GSFC); a synopsis of the mission's and instruments' management and development structures; and a brief description of the primary components and elements that form the foundation ofthe mission, encompassing the major mission segments (space, ground, and science data processing) and their roles in integration, testing, and operations

    Radiometric approach for the detection of picophytoplankton assemblages across oceanic fronts

    Get PDF
    Cell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes were estimated in surface waters using principal component analysis (PCA) of hyperspectral and multispectral remote-sensing reflectance data. This involved the development of models that employed multilinear correlations between cell abundances across the Atlantic Ocean and a combination of PCA scores and sea surface temperatures. The models retrieve high Prochlorococcus abundances in the Equatorial Convergence Zone and show their numerical dominance in oceanic gyres, with decreases in Prochlorococcus abundances towards temperate waters where Synechococcus flourishes, and an emergence of picoeukaryotes in temperate waters. Fine-scale in-situ sampling across ocean fronts provided a large dynamic range of measurements for the training dataset, which resulted in the successful detection of fine-scale Synechococcus patches. Satellite implementation of the models showed good performance (R2 > 0.50) when validated against in-situ data from six Atlantic Meridional Transect cruises. The improved relative performance of the hyperspectral models highlights the importance of future high spectral resolution satellite instruments, such as the NASA PACE mission’s Ocean Color Instrument, to extend our spatiotemporal knowledge about ecologically relevant phytoplankton assemblages

    PACE Technical Report Series, Volume 7: Ocean Color Instrument (OCI) Concept Design Studies

    Get PDF
    Extending OCI hyperspectral radiance measurements in the ultraviolet to 320 nm on the blue spectrograph enables quantitation of atmospheric total column ozone (O3) for use in ocean color atmospheric correction algorithms. The strong absorption by atmospheric ozone below 340 nm enables the quantification of total column ozone. Other applications are possible but were not investigated due to their exploratory nature and lower priority.The first step in the atmospheric correction processing, which converts top-of-the-atmosphere radiances to water-leaving radiances, is removal of the absorbance by atmospheric trace gases such as water vapor, oxygen, ozone and nitrogen dioxide. Details of the atmospheric correction process currently used by the Ocean Biology Processing Group (OBPG) and will be employed for PACE with appropriate modifications, are described by Mobley et al. [2016]. Atmospheric ozone absorbs within the visible to near-infrared spectrum between ~450 nm and 800nm and most appreciably between 530 nm and 650 nm, a spectral region critical for maintaining NASA's chlorophyll-a climate data record and for PACE algorithms planned to characterize phytoplankton community composition and other ocean color products.While satellite-based observations will likely be available during PACE's mission lifetime, the difference in acquisition time with PACE, the coarseness in their spatial resolution, and differences in viewing geometries will introduce significant levels of uncertainties in PACE ocean color data products

    INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

    Get PDF
    [EN] This paper describes the achievements of the H2020 project INDIGO-DataCloud. The project has provided e-infrastructures with tools, applications and cloud framework enhancements to manage the demanding requirements of scientific communities, either locally or through enhanced interfaces. The middleware developed allows to federate hybrid resources, to easily write, port and run scientific applications to the cloud. In particular, we have extended existing PaaS (Platform as a Service) solutions, allowing public and private e-infrastructures, including those provided by EGI, EUDAT, and Helix Nebula, to integrate their existing services and make them available through AAI services compliant with GEANT interfederation policies, thus guaranteeing transparency and trust in the provisioning of such services. Our middleware facilitates the execution of applications using containers on Cloud and Grid based infrastructures, as well as on HPC clusters. Our developments are freely downloadable as open source components, and are already being integrated into many scientific applications.INDIGO-Datacloud has been funded by the European Commision H2020 research and innovation program under grant agreement RIA 653549.Salomoni, D.; Campos, I.; Gaido, L.; Marco, J.; Solagna, P.; Gomes, J.; Matyska, L.... (2018). INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures. Journal of Grid Computing. 16(3):381-408. https://doi.org/10.1007/s10723-018-9453-3S381408163García, A.L., Castillo, E.F.-d., Puel, M.: Identity federation with VOMS in cloud infrastructures. In: 2013 IEEE 5Th International Conference on Cloud Computing Technology and Science, pp 42–48 (2013)Chadwick, D.W., Siu, K., Lee, C., Fouillat, Y., Germonville, D.: Adding federated identity management to OpenStack. Journal of Grid Computing 12(1), 3–27 (2014)Craig, A.L.: A design space review for general federation management using keystone. In: Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, pp 720–725. IEEE Computer Society (2014)Pustchi, N., Krishnan, R., Sandhu, R.: Authorization federation in iaas multi cloud. In: Proceedings of the 3rd International Workshop on Security in Cloud Computing, pp 63–71. ACM (2015)Lee, C.A., Desai, N., Brethorst, A.: A Keystone-Based Virtual Organization Management System. In: 2014 IEEE 6Th International Conference On Cloud Computing Technology and Science (Cloudcom), pp 727–730. IEEE (2014)Castillo, E.F.-d., Scardaci, D., García, A.L.: The EGI Federated Cloud e-Infrastructure. Procedia Computer Science 68, 196–205 (2015)AARC project: AARC Blueprint Architecture, see https://aarc-project.eu/architecture . Technical report (2016)Oesterle, F., Ostermann, S., Prodan, R., Mayr, G.J.: Experiences with distributed computing for meteorological applications: grid computing and cloud computing. Geosci. Model Dev. 8(7), 2067–2078 (2015)Plasencia, I.C., Castillo, E.F.-d., Heinemeyer, S., García, A.L., Pahlen, F., Borges, G.: Phenomenology tools on cloud infrastructures using OpenStack. The European Physical Journal C 73(4), 2375 (2013)Boettiger, C.: An introduction to docker for reproducible research. ACM SIGOPS Operating Systems Review 49(1), 71–79 (2015)Docker: http://www.docker.com (2013)Gomes, J., Campos, I., Bagnaschi, E., David, M., Alves, L., Martins, J., Pina, J., Alvaro, L.-G., Orviz, P.: Enabling rootless linux containers in multi-user environments: the udocker tool. Computing Physics Communications. https://doi.org/10.1016/j.cpc.2018.05.021 (2018)Zhang, Z., Chuan, W., Cheung, D.W.L.: A survey on cloud interoperability taxonomies, standards, and practice. SIGMETRICS perform. Eval. Rev. 40(4), 13–22 (2013)Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments. Journal of Grid Computing 12(4), 559–592 (2014)Nyrén, R., Metsch, T., Edmonds, A., Papaspyrou, A.: Open Cloud Computing Interface–Core. Technical report, Open Grid Forum (2010)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-Infrastructure. Technical report, Open Grid Forum (2010)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-RESTful HTTP Rendering. Technical report, Open Grid Forum (2011)(Ca Technologies) Lipton, P., (Ibm) Moser, S., (Vnomic) Palma, D., (Ibm) Spatzier, T.: Topology and Orchestration Specification for Cloud Applications. Technical report, OASIS Standard (2013)Teckelmann, R., Reich, C., Sulistio, A.: Mapping of cloud standards to the taxonomy of interoperability in IaaS. In: Proceedings - 2011 3rd IEEE International Conference on Cloud Computing Technology and Science, CloudCom 2011, pp 522–526 (2011)García, A.L., Castillo, E.F.-d., Fernández, P.O.: Standards for enabling heterogeneous IaaS cloud federations. Computer Standards & Interfaces 47, 19–23 (2016)Caballer, M., Zala, S., García, A.L., Montó, G., Fernández, P.O., Velten, M.: Orchestrating complex application architectures in heterogeneous clouds. Journal of Grid Computing 16 (1), 3–18 (2018)Hardt, M., Jejkal, T., Plasencia, I.C., Castillo, E.F.-d., Jackson, A., Weiland, M., Palak, B., Plociennik, M., Nielsson, D.: Transparent Access to Scientific and Commercial Clouds from the Kepler Workflow Engine. Computing and Informatics 31(1), 119 (2012)Fakhfakh, F., Kacem, H.H., Kacem, A.H.: Workflow Scheduling in Cloud Computing a Survey. In: IEEE 18Th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations (EDOCW), 2014, Vol. 71, pp. 372–378. Springer, New York (2014)Stockton, D.B., Santamaria, F.: Automating NEURON simulation deployment in cloud resources. Neuroinformatics 15(1), 51–70 (2017)Plóciennik, M., Fiore, S., Donvito, G., Owsiak, M., Fargetta, M., Barbera, R., Bruno, R., Giorgio, E., Williams, D.N., Aloisio, G.: Two-level Dynamic Workflow Orchestration in the INDIGO DataCloud for Large-scale, Climate Change Data Analytics Experiments. Procedia Computer Science 80, 722–733 (2016)Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Multicloud deployment of computing clusters for loosely coupled mtc applications. IEEE transactions on parallel and distributed systems 22(6), 924–930 (2011)Katsaros, G., Menzel, M., Lenk, A.: Cloud Service Orchestration with TOSCA, Chef and Openstack. In: Ic2e (2014)Garcia, A.L., Zangrando, L., Sgaravatto, M., Llorens, V., Vallero, S., Zaccolo, V., Bagnasco, S., Taneja, S., Dal Pra, S., Salomoni, D., Donvito, G.: Improved Cloud resource allocation: how INDIGO-DataCloud is overcoming the current limitations in Cloud schedulers. J. Phys. Conf. Ser. 898(9), 92010 (2017)Singh, S., Chana, I.: A survey on resource scheduling in cloud computing issues and challenges. Journal of Grid Computing, pp. 1–48 (2016)García, A.L., Castillo, E.F.-d., Fernández, P.O., Plasencia, I.C., de Lucas, J.M.: Resource provisioning in Science Clouds: Requirements and challenges. Software: Practice and Experience 48(3), 486–498 (2018)Chauhan, M.A., Babar, M.A., Benatallah, B.: Architecting cloud-enabled systems: a systematic survey of challenges and solutions. Software - Practice and Experience 47(4), 599–644 (2017)Somasundaram, T.S., Govindarajan, K.: CLOUDRB A Framework for scheduling and managing High-Performance Computing (HPC) applications in science cloud. Futur. Gener. Comput. Syst. 34, 47–65 (2014)Sotomayor, B., Keahey, K., Foster, I.: Overhead Matters: A Model for Virtual Resource Management. In: Proceedings of the 2nd International Workshop on Virtualization Technology in Distributed Computing SE - VTDC ’06, p 5. IEEE Computer Society, Washington (2006)SS, S.S., Shyam, G.K., Shyam, G.K.: Resource management for Infrastructure as a Service (IaaS) in cloud computing SS Manvi A survey. J. Netw. Comput. Appl. 41, 424–440 (2014)INDIGO-DataCloud consortium: Initial requirements from research communities - d2.1, see https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21 . Technical report (2015)Europen open science cloud: https://ec.europa.eu/research/openscience (2015)Proot: https://proot-me.github.io/ (2014)Runc: https://github.com/opencontainers/runc (2016)Fakechroot: https://github.com/dex4er/fakechroot (2015)Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for container-based architectures Future Generation Computer Systems (2018)de Vries, K.J.: Global fits of supersymmetric models after LHC run 1. Phd thesis Imperial College London (2015)Openstack: https://www.openstack.org/ (2015)See http://argus-documentation.readthedocs.io/en/stable/argus_introduction.html (2017)See https://en.wikipedia.org/wiki/xacml (2013)See http://www.simplecloud.info (2014)Opennebula: http://opennebula.org/ (2018)Redhat openshift: http://www.opencityplatform.eu (2011)The cloud foundry foundation: https://www.cloudfoundry.org/ (2015)Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. Journal of Grid Computing 13(1), 53–70 (2015)See http://www.infoq.com/articles/scaling-docker-with-kubernetes http://www.infoq.com/articles/scaling-docker-with-kubernetes (2014)Prisma project: http://www.ponsmartcities-prisma.it/ (2010)Opencitiy platform: http://www.opencityplatform.eu (2014)Onedata: https://onedata.org/ (2018)Dynafed: http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project (2011)Fts3: https://svnweb.cern.ch/trac/fts3 (2011)Fernández, P.O., García, A.L., Duma, D.C., Donvito, G., David, M., Gomes, J.: A set of common software quality assurance baseline criteria for research projects, see http://hdl.handle.net/10261/160086 . Technical reportHttermann, M.: Devops for developers Apress (2012)EOSC-Hub: ”Integrating and managing services for the European Open Science Cloud” Funded by H2020 research and innovation pr ogramme under grant agreement No. 777536. See http://eosc-hub.eu (2018)Apache License: author = https://www.apache.org/licenses/LICENSE-2.0 (2004)INDIGO Package Repo: http://repo.indigo-datacloud.eu/ (2017)INDIGO DockerHub: https://hub.docker.com/u/indigodatacloud/ https://hub.docker.com/u/indigodatacloud/ (2015)Indigo gitbook: https://indigo-dc.gitbooks.io/indigo-datacloud-releases https://indigo-dc.gitbooks.io/indigo-datacloud-releases (2017)Van Zundert, G.C., Bonvin, A.M.: Disvis: quantifying and visualizing the accessible interaction space of distance restrained biomolecular complexes. Bioinformatics 31(19), 3222–3224 (2015)Van Zundert, G.C., Bonvin, A.M.: Fast and sensitive rigid–body fitting into cryo–em density maps with powerfit. AIMS Biophys. 2(0273), 73–87 (2015

    IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation Volume 7.0. Aquatic Primary Productivity Field Protocols for Satellite Validation and Model Synthesis. (IOCCG Protocols Series, Volume 7.0). DOI: http://dx.doi.org/10.25607/OBP-1835

    Get PDF
    In 2018, a working group sponsored by the NASA Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) project, in conjunction with the International Ocean Colour Coordinating Group (IOCCG), European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and Japan Aerospace Exploration Agency (JAXA), was assembled with the aim to develop community consensus on multiple methods for measuring aquatic primary productivity used for satellite validation and model synthesis. A workshop to commence the working group efforts was held December 5–7, 2018, at the University Space Research Association headquarters in Columbia, MD, USA, bringing together 26 active researchers from 16 institutions. In this document, we discuss and develop the workshop findings as they pertain to primary productivity measurements, including the essential issues, nuances, definitions, scales, uncertainties, and ultimately best practices for data collection across multiple methodologies
    corecore