282 research outputs found

    Emissions of Fe(II) and its kinetic of oxidation at Tagoro submarine volcano, El Hierro

    Get PDF
    The eruptive process that took place in October 2011 in the submarine volcano Tagoro off the Island of El Hierro and the subsequent degasification stage, five months later, have increased the concentration of TdFe(II) (Total dissolved iron(II)) in thewaters nearest to the volcanic edifice. In order to detect any variation in concentrations of TdFe(II) due to hydrothermal emissions, three cruiseswere carried out two years after the eruptive process in October 2013,March 2014 andMay 2015. The results fromthese cruises confirmed important positive anomalies in TdFe(II), which coincided with negatives anomalies in pHF,is (pH in free scale, at in situ conditions) located in the proximity of themain cone. Maximumvalues in TdFe(II) both at the surface, associated to chlorophyll a maximum, and at the sea bottom, were also observed, showing the important influence of organic complexation and particle re-suspension processes. Temporal variability studies were carried out over periods ranging from hours to days in the stations located over themain and two secondary cones in the volcanic edifice with positive anomalies in TdFe(II) concentrations and negative anomalies in pHF,is values. Observations showed an important variability in both pHF,is and TdFe(II) concentrations, which indicated the volcanic area was affected by a degasification process that remained in the volcano after the eruptive phase had ceased. Fe(II) oxidation kinetic studies were also undertaken in order to analyze the effects of the seawater properties in the proximities of the volcano on the oxidation rate constants and t1/2 (half-life time) of ferrous iron. The increased TdFe(II) concentrations and the low associated pHF,is values acted as an important fertilization event in the seawater around the Tagoro volcano at the Island of El Hierro providing optimal conditions for the regeneration of the area.En prens

    A capacity assessment framework for the fit-for-purpose land administration systems: the use of unmanned aerial vehicle (UAV) in Rwanda and Kenya

    Get PDF
    This article presents a novel capacity assessment framework, coined as Fit-For-Purpose capacity assessment framework (FCAF), to measure the capacity of the land administration system compliant with the Fit-For-Purpose approach. The framework incorporates legal, political, operational, social, technical, and technological capacity conditions and provides a holistic view of the capacity development pathways. The FCAF is designed by merging six capacity dimensions, namely regulations, political system, operational unit, social norms, land recording techniques, and software. FCAF systematically identifies context-specific, enabling and impeding capacity components and thus provides a basis to develop the necessary capacity development strategies and interventions. Specifically, FCAF can serve as a useful heuristic for the development of the capacity development strategies for the adaptation and sustainability of the geospatial technologies in land administration systems. In the article, by assessing the capacity needs for the adaptation of unmanned aerial vehicle (UAV) technology in Rwandese and Kenyan land administration systems, the efficacy of the FCAF is tested. The findings suggest that in Rwanda, capacity conditions are more supportive of an easier uptake of UAV. Nonetheless, weak market conditions and strict regulations concerning UAV call for attention. In Kenya, existing institutional and political challenges in the land administration system raise concerns about the reliability and attainability of UAV under the current framework conditions. Despite that, there are more supportive market conditions in Kenya in comparison to Rwanda and multiple non-governmental and private actors that can bolster the adaptation process into a more sustainable and scalable land administration system. The politics and administration of institutional chang

    Severe Deoxygenation Event Caused by the 2011 Eruption of the Submarine Volcano Tagoro (El Hierro, Canary Islands)

    Get PDF
    The shallow, near-shore submarine volcano Tagoro erupted in October 2011 at the Mar de las Calmas marine reserve, south of El Hierro island. The injection of lava into the ocean had its strongest episode during November 2011 and lasted until March 2012. During this time, in situ measurements of dissolved oxygen were carried out, using a continuous oxygen sensor constantly calibrated with water samples. A severe deoxygenation was observed in the area, particularly during October-November 2011, which was one of the main causes of the high mortality observed among the local marine ecosystem. The measured O2 concentrations were as low as 7.71 µmol kg-1, which represents a -96% decrease with respect to unaffected waters. The oxygen depletion was found in the first 250 m of the water column, with peaks between 70-120 m depth. The deoxygenated plume covered an area of at least 464 km2, distributed particularly south and south-west of the volcano, with occasional patches found north of the island. The oxygen levels were also monitored through the following years, during the degassing stage of the volcano, when oxygen depletion was no longer observed. Additionally, during the eruption, an island-generated anticyclonic eddy interacted with the volcanic plume and transported it for at least 80 km, where the O2 measurements still showed a -8% decrease after mixing and dilution. This feature draws attention to the permanence and transport of volcanic plumes far away from their source and long after the emission.En prens

    Investigation of Combustion Control in a Dump Combustor Using the Feedback Free Fluidic Oscillator

    Get PDF
    A feedback free fluidic oscillator was designed and integrated into a single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. The fluidic oscillator uses internal fluid dynamics to create an unsteady outlet jet at a specific frequency. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the combustor dump plane. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide with an overall O/F ratio of 11.7. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics enabling the study of a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared against equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 67% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. Additionally, computational fluid dynamics analysis of the combustor gives insight into the flow field interaction of the fluidic oscillators. The results indicate that open loop high frequency propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate

    Significant Release of Dissolved Inorganic Nutrients From the Shallow Submarine Volcano Tagoro (Canary Islands) Based on Seven-Year Monitoring

    Get PDF
    Tagoro, the shallow submarine volcano that erupted south of El Hierro (Canary Islands, Spain) in October 2011, has been intensely monitored for over 7 years, from the early eruptive stage to the current degassing stage characterized by moderate hydrothermal activity. Here, we present a detailed study of the emissions of inorganic macronutrients (NO2– + NO3–, PO4, and Si(OH)4) comprising a dataset of over 3300 samples collected through three different sampling methodologies. Our results show a significant nutrient enrichment throughout the whole studied period, up to 8.8-fold (nitrate), 4.0-fold (phosphate), and 16.3-fold (silicate) in the water column, and larger enrichments of phosphate (10.5-fold) and silicate (325.4-fold), but not of nitrate, in the samples collected directly from the vents. We also provide some preliminary results showing ammonium (NH4+) concentrations up to 1.97 μM in the vent fluids as compared to 0.02 μM in the surrounding waters. Nutrient fluxes from the volcano during the degassing stage were estimated as 3.19 ± 1.17 mol m–2 year–1 (NO2– + NO3–), 0.02 ± 0.01 mol m–2 year–1 (PO4), and 0.60 ± 1.35 mol m–2 year–1 (Si(OH)4), comparable to other important nutrient sources in the region such as fluxes from the NW-African upwelling. Nutrient ratios were affected, with a minimum (NO3– + NO2–):PO4 ratio of 2.36:1; moreover, a linear correlation between silicate and temperature enabled the use of this nutrient as a mixing tracer. This study sheds light on how shallow hydrothermal systems impact the nutrient-poor upper waters of the ocean.En prens

    Regeneration of Fe(II) during EIFeX and SOFeX

    Get PDF
    Investigations into Fe(II) cycling during two Southern Ocean mesoscale iron enrichment experiments, SOFeX and EIFeX, clearly show the importance of Fe(II) to iron speciation during these experiments. In both cases the added Fe(II) persisted significantly longer than its expected oxidation time indicating a significant Fe reduction process at work. During EIFeX diel studies showed a strong photochemically induced cycle in Fe(II) production in sunlit surface waters. Our results suggest that the photochemical cycling of iron may also be important in unfertilized waters of the Southern Ocean

    Interaction between gemcitabine and topotecan in human non-small-cell lung cancer cells: effects on cell survival, cell cycle and pharmacogenetic profile

    Get PDF
    The pyrimidine analogue gemcitabine is an established effective agent in the treatment of non-small-cell lung cancer (NSCLC). The present study investigates whether gemcitabine would be synergistic with the topoisomerase I inhibitor topotecan against the NSCLC A549 and Calu-6 cells. Cells were treated with gemcitabine and topotecan for 1 h and the type of drug interaction was assessed using the combination index (CI). Cell cycle alterations were analysed by flow cytometry, while apoptosis was examined by the occurrence of DNA internucleosomal fragmentation, nuclear condensation and caspase-3 activation. Moreover, the possible involvement of the PI3K-Akt signalling pathway was investigated by the measurement of Akt phosphorylation. Finally, quantitative, real-time PCR (QRT-PCR) was used to study modulation of the gemcitabine-activating enzyme deoxycytidine kinase (dCK) and the cellular target enzyme ribonucleotide reductase (RR). In results, it was found that simultaneous and sequential topotecan → gemcitabine treatments were synergistic, while the reverse sequence was antagonistic in both cell lines. DNA fragmentation, nuclear condensation and enhanced caspase-3 activity demonstrated that the drug combination markedly increased apoptosis in comparison with either single agent, while cell cycle analysis showed that topotecan increased cells in S phase. Furthermore, topotecan treatment significantly decreased the amount of the activated form of Akt, and enhanced the expression of dCK (+155.0 and +115.3% in A549 and Calu-6 cells, respectively), potentially facilitating gemcitabine activity. In conclusion, these results indicate that the combination of gemcitabine and topotecan displays schedule-dependent activity in vitro against NSCLC cells. The gemcitabine → topotecan sequence is antagonistic while drug synergism is obtained with the simultaneous and the sequential topotecan → gemcitabine combinations, which are associated with induction of decreased Akt phosphorylation and increased dCK expression
    • …
    corecore