1,308 research outputs found

    The origin of high metal tenor in Ni-PGE ores from the Kevitsa Ni-Cu-(PGE) deposit, northern Finland:constraints from an in-situ trace element study of base metal sulphides

    Get PDF
    Abstract. The Kevitsa mafic-ultramafic intrusion is located in the Central Lapland Greenstone Belt, in Finnish Lapland, and hosts a large Ni-Cu-PGE sulphide deposit. Since 2012, Kevitsa has been one of Europe’s most important nickel mines with a pre-mine resource of 274.8 Mt @ 0.30 % Ni, 0.41 % Cu, 0.014 % Co, 0.11ppm Au, 0.15 ppm Pd and 0.2 ppm Pt. There are two main ore types that make up the economic resources, named normal ore and Ni-PGE ore, of which the normal ore type comprises 90 vol.%. The normal ore has average Ni and Cu grades of 0.3 and 0.42 wt.%, respectively, with the main ore minerals being pyrrhotite, pentlandite, and chalcopyrite. The Ni-PGE ore consists predominantly of pentlandite, pyrite and millerite and has higher and more variable Ni grades, lower Cu grades (Ni/Cu 1.5–15) and extremely high Ni tenors, up to 40 wt.%. The Ni-PGE ore has a high PGE content ranging from >1 ppm to 26.8 ppm, much higher than that of the normal ore (0.5 to 1 ppm of combined Pt, Pd and Au). The uniqueness of the Ni-PGE ore type is amplified further by the high Ni contents of its cumulus silicates, as attested by Ni contents of olivine that reach up to 1.4 wt.%. In addition to the aforementioned ore types, there is an uneconomic type, called false ore, which consists of pyrrhotite, with rare chalcopyrite and pentlandite and generally has a low Ni content (1 ppm Ru, Ir and Os, and up to 51 ppm Pd. Although Pd is found in all of the sulphide phases, pentlandite is the richest, with Pd contents ranging from 0.3 ppm in the false ore to tens of ppm in the Ni-PGE ore. Millerite and pyrite are much lower in PGEs than pentlandite, and pyrrhotite and chalcopyrite record the lowest levels. Platinum contents are low throughout, with the majority of analyses falling below the detection limit (<0.001ppm)

    Lossy Multi/Hyperspectral Compression HW Implementation at high data rate

    Get PDF
    Image compression is becoming more and more important, as new multispectral and hyperspectral instruments are going to generate very high data rates due to the increased spatial and spectral resolutions. Transmitting all the acquired data to the ground segment is a serious bottleneck, and compression techniques are a feasible solution to this problem. The CCSDS has established a working group (WG) on multispectral and Hyperspectral Data Compression (MHDC), which has the purpose of standardizing compression techniques to be used onboard. The WG has already standardized a lossless compression algorithm for multispectral and hyperspectral images, and has started working on a lossy compression algorithm. The complexity of lossless compression algorithms is typically larger than that of lossy ones, leading to potentially lower throughputs. Therefore, a careful assessment is required in order to identify techniques that are able to sustain very high data rates. The increased complexity can also lead to increased resource occupancy on a hardware device such as an FPGA. Lossy compression introduces information losses in the images, and these losses must be accurately characterized, and their effect on the applications investigated. For these reasons, developing a lossy algorithm requires a more elaborate process. Under an ESA contract primed by Politecnico of Torino, TSD is currently designing an IP core for FPGA and/or ASIC implementation of a lossy compression algorithm that is being proposed for CCSDS standardization. In addition to the IP core, TSD is developing a HW platform based on the Xilinx Virtex-5 XQR5VFX130, the industry's first high performance rad-hard reconfigurable FPGA for processing-intensive for space systems. Advanced results along with details of electronic platform design will be presented in this paper

    Therapeutic advances in ADPKD: the future awaits

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder included in ciliopathies, representing the fourth cause of end stage renal disease (ESRD), with an estimated prevalence between 1:1000 and 1:2500. It is mainly caused by mutations in the PKD1 and PKD2 genes encoding for polycystin 1 (PC1) and polycystin 2 (PC2), which regulate differentiation, proliferation, survival, apoptosis, and autophagy. The advances in the knowledge of multiple molecular pathways involved in the pathophysiology of ADPKD led to the development of several treatments which are currently under investigation. Recently, the widespread approval of tolvaptan and, in Italy, of long-acting release octreotide (octreotide-LAR), represents but the beginning of the new therapeutic management of ADPKD patients. Encouraging results are expected from ongoing randomized controlled trials (RCTs), which are investigating not only drugs acting on the calcium/cyclic adenosin monoposphate (cAMP) pathway, the most studied target so far, but also molecules targeting specific pathophysiological pathways (e.g. epidermal growth factor (EGF) receptor, AMP-activated protein kinase (AMPK) and KEAP1-Nrf2) and sphingolipids. Moreover, studies on animal models and cultured cells have also provided further promising therapeutic strategies based on the role of intracellular calcium, cell cycle regulation, MAPK pathway, epigenetic DNA, interstitial inflammation, and cell therapy. Thus, in a near future, tailored therapy could be the key to changing the natural history of ADPKD thanks to the vigorous efforts that are being made to implement clinical and preclinical studies in this field. Our review aimed to summarize the spectrum of drugs that are available in the clinical practice and the most promising molecules undergoing clinical, animal, and cultured cell studies. Graphical abstract: [Figure not available: see fulltext.

    An Integrated Approach to Risk and Impacts of Geo-Resources Exploration and Exploitation

    Get PDF
    Geo-resources are widely exploited in our society, with huge benefits for both economy and communities. Nevertheless, with benefits come risks and impacts. Understanding how such risks and impacts are intrinsically borne in a given project is of critical importance for both industry and society. In particular, it is crucial to distinguish between the specific impacts related to exploiting a given energy resource and those shared with the exploitation of other energy resources. A variety of different approaches can be used to identify and assess such risks and impacts. In particular, Life Cycle Assessment (LCA) and risk assessments (RAs) are the most commonly adopted. Although both are widely used to support decision making in environmental management, they are rarely used in combination perhaps because they have been developed by largely different groups of specialists. By analyzing the structure and the ratio of the two tools, we have developed an approach for combining and harmonizing LCA and MRA; the resulting protocol envisages building MRA upon LCA both qualitatively and quantitatively. We demonstrate the approach in a case study using a virtual site (based on a real one) for geothermal energy production

    Multiplex staining depicts the immune infiltrate in colitis-induced colon cancer model

    Get PDF
    Assessment of the host immune response pattern is of increasing importance as highly prognostic and diagnostic, in immune-related diseases and in some types of cancer. Chronic inflammation is a major hallmark in colon cancer formation, but, despite the extent of local inflammatory infiltrate has been demonstrated to be extremely informative, its evaluation is not routinely assessed due to the complexity and limitations of classical immunohistochemistry (IHC). In the last years, technological advance helped in bypassing technical limits, setting up multiplex IHC (mIHC) based on tyramide signal amplification (TSA) method and designing software suited to aid pathologists in cell scoring analysis. Several studies verified the efficacy of this method, but they were restricted to the analysis of human samples. In the era of translational medicine the use of animal models to depict human pathologies, in a more complete and complex approach, is really crucial. Nevertheless, the optimization and validation of this method to species other than human is still poor. We took advantage of Multispectral Imaging System to identify the immunoprofile of Dextran Sulphate Sodium (DSS)-treated mouse colon. We optimized a protocol to sequentially stain formalin fixed paraffin embedded murine colon samples for CD3, CD8a, CD4, and CD4R5B0 antigens. With this approach we obtained a detailed lymphocyte profile, while preserving the morphological tissue context, generally lost with techniques like gene expression profiling or flow cytometry. This study, comparing the results obtained by mIHC with immunophenotyping performed with cytofluorimetric and standard IHC methods validates the potentiality and the applicability of this innovative approach

    Role of extracellular matrix in gastrointestinal cancer-associated angiogenesis

    Get PDF
    Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients\u2019 outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies

    Stepwise shortening of agalsidase beta infusion duration in Fabry disease: Clinical experience with infusion rate escalation protocol

    Get PDF
    Background: Although enzyme replacement therapy with agalsidase beta resulted in a variety of clinical benefits, life-long biweekly intravenous infusion may impact on patients’ quality of life. Moreover, regular infusions are time-consuming: although a stepwise shortening of infusion duration is allowed up to a minimum of 1.5 hr, in most centers it remains ≥3 hr, and no data exists about the safety and tolerability of agalsidase beta administration at maximum tolerated infusion rate. Methods: In this study, we reported our experience with a stepwise infusion rate escalation protocol developed in our center in a cohort of 53 Fabry patients (both already receiving and treatment-naΪve), and explored factors predictive for the infusion rate increase tolerability. Results: Fifty-two patients (98%) reduced infusion duration ≤3 hr; of these, 38 (72%) even reached a duration ≤2 hr. We found a significant difference between the mean duration reached by already treated and naΪve patients (p <.01). More severely affected patients (male patients and those with lower enzyme activity) received longer infusions for higher risk of infusion-associated reactions (IARs). A significant correlation between anti-agalsidase antibodies and IARs was found. Conclusion: Our infusion rate escalation protocol is safe and could improve patient compliance, satisfaction and quality of life
    • …
    corecore