3,335 research outputs found

    Diagnosis and Treatment of the Modern Backache

    Get PDF
    There are two reasonably clear-cut forms of backache that lend themselves to a reasonably straight-forward form of treatment. These are (1) the ruptured intervertebral disc and (2) the degenerated intervertebral disc. In both instances, once a diagnosis can be reasonably made, treatment is at first conservative, and this form of treatment frequently issuccessful. In the absence of success, an operative procedure is available which offers reasonable hope of correction of the difficulty

    The Functional Organization of the Left STS: A Large Scale Meta-Analysis of PET and fMRI Studies of Healthy Adults

    Get PDF
    The superior temporal sulcus (STS) in the left hemisphere is functionally diverse, with sub-areas implicated in both linguistic and non-linguistic functions. However, the number and boundaries of distinct functional regions remain to be determined. Here, we present new evidence, from meta-analysis of a large number of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies, of different functional specificity in the left STS supporting a division of its middle to terminal extent into at least three functional areas. The middle portion of the left STS stem (fmSTS) is highly specialized for speech perception and the processing of language material. The posterior portion of the left STS stem (fpSTS) is highly versatile and involved in multiple functions supporting semantic memory and associative thinking. The fpSTS responds to both language and non-language stimuli but the sensitivity to non-language material is greater. The horizontal portion of the left STS stem and terminal ascending branches (ftSTS) display intermediate functional specificity, with the anterior-dorsal ascending branch (fatSTS) supporting executive functions and motor planning and showing greater sensitivity to language material, and the horizontal stem and posterior-ventral ascending branch (fptSTS) supporting primarily semantic processing and displaying greater sensitivity to non-language material. We suggest that the high functional specificity of the left fmSTS for speech is an important means by which the human brain achieves exquisite affinity and efficiency for native speech perception. In contrast, the extreme multi-functionality of the left fpSTS reflects the role of this area as a cortical hub for semantic processing and the extraction of meaning from multiple sources of information. Finally, in the left ftSTS, further functional differentiation between the dorsal and ventral aspect is warranted

    Genomic Research to Identify Novel Pathways in the Development of Abdominal Aortic Aneurysm

    Get PDF
    Abdominal aortic aneurysm (AAA) is a common disease with a large heritable component. There is a need to improve our understanding of AAA pathogenesis in order to develop novel treatment paradigms. Genomewide association studies have revolutionized research into the genetic variants that underpin the development of many complex diseases including AAA. This article reviews the progress that has been made to date in this regard, including mechanisms by which loci identified by GWAS may contribute to the development of AAA. It also highlights potential post-GWAS analytical strategies to improve our understanding of the disease further

    Novel synthesis of porous aluminium and its application in hydrogen storage

    Get PDF
    A novel approach for confining LiBH4 within a porous aluminium scaffold was applied in order to enhance its hydrogen storage properties, relative to conventional techniques for confining complex hydrides. The porous aluminium scaffold was fabricated by sintering NaAlH4, which was in the form of a dense pellet, under dynamic vacuum. The final product was a porous aluminium scaffold with the Na and H2 having been removed from the initial pellet. This technique contributed to achieving highly dispersed LiBH4 particles that were also destabilised by the presence of the aluminium scaffold. In this study, the effectiveness of this novel fabrication method of confined/destabilised LiBH4 was extensively investigated, which aimed to simultaneously improve the hydrogen release at lower temperature and the kinetics of the system. These properties were compared with the properties of other confined LiBH4 samples found in the literature. As-synthesised samples were characterised using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Nitrogen Adsorption measurements. The hydrogen storage capacity of all samples was analysed using temperature programmed desorption in order to provide a comprehensive survey of their hydrogen desorption properties. The porous aluminium scaffold has a wide pore size distribution with most of the porosity due to pores larger than 50 nm. Despite this the onset hydrogen desorption temperature (Tdes) of the LiBH4 infiltrated into the porous aluminium scaffold was 200 °C lower than that of bulk LiBH4 and 100 °C lower than that of nanosized LiBH4. Partial cycling could be achieved below the melting point of LiBH4 but the kinetics of hydrogen release decreased with cycle number

    Integrated whole transcriptome and DNA methylation analysis identifies gene networks specific to late-onset Alzheimer’s disease

    Get PDF
    Previous transcriptome studies observed disrupted cellular processes in late-onset Alzheimer\u27s disease (LOAD), yet it is unclear whether these changes are specific to LOAD, or are common to general neurodegeneration. In this study, we address this question by examining transcription in LOAD and comparing it to cognitively normal controls and a cohort of disease controls. Differential transcription was examined using RNA-seq, which allows for the examination of protein coding genes, non-coding RNAs, and splicing. Significant transcription differences specific to LOAD were observed in five genes: C10orf105, DIO2, a lincRNA, RARRES3, and WIF1. These findings were replicated in two independent publicly available microarray data sets. Network analyses, performed on 2,504 genes with moderate transcription differences in LOAD, reveal that these genes aggregate into seven networks. Two networks involved in myelination and innate immune response specifically correlated to LOAD. FRMD4B and ST18, hub genes within the myelination network, were previously implicated in LOAD. Of the five significant genes, WIF1 and RARRES3 are directly implicated in the myelination process; the other three genes are located within the network. LOAD specific changes in DNA methylation were located throughout the genome and substantial changes in methylation were identified within the myelination network. Splicing differences specific to LOAD were observed across the genome and were decreased in all seven networks. DNA methylation had reduced influence on transcription within LOAD in the myelination network when compared to both controls. These results hint at the molecular underpinnings of LOAD and indicate several key processes, genes, and networks specific to the disease
    corecore