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Abstract. Previous transcriptome studies observed disrupted cellular processes in late-onset Alzheimer’s disease (LOAD), yet
it is unclear whether these changes are specific to LOAD, or are common to general neurodegeneration. In this study, we address
this question by examining transcription in LOAD and comparing it to cognitively normal controls and a cohort of “disease
controls.” Differential transcription was examined using RNA-seq, which allows for the examination of protein coding genes,
non-coding RNAs, and splicing. Significant transcription differences specific to LOAD were observed in five genes: C100rf105,
DIO2, alincRNA, RARRES3, and WIF 1. These findings were replicated in two independent publicly available microarray data
sets. Network analyses, performed on 2,504 genes with moderate transcription differences in LOAD, reveal that these genes
aggregate into seven networks. Two networks involved in myelination and innate immune response specifically correlated to
LOAD. FRMD4B and STI8, hub genes within the myelination network, were previously implicated in LOAD. Of the five
significant genes, WIF1 and RARRES3 are directly implicated in the myelination process; the other three genes are located
within the network. LOAD specific changes in DNA methylation were located throughout the genome and substantial changes
in methylation were identified within the myelination network. Splicing differences specific to LOAD were observed across the
genome and were decreased in all seven networks. DNA methylation had reduced influence on transcription within LOAD in the
myelination network when compared to both controls. These results hint at the molecular underpinnings of LOAD and indicate
several key processes, genes, and networks specific to the disease.
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primarily cause early-onset AD and comprise 2% of
AD cases [2-5]. Conversely, late-onset AD (LOAD)
is much more complex and accounts for greater than
90% of AD cases [6].

Recent transcriptome studies have shed light on
molecular functions altered in LOAD. Many of these
studies have consistently observed alterations within
several pathways: synaptic transmission [7, 8], inflam-
mation [9], energy metabolism [9-11], myelination
[11], and signal transduction [8, 10, 12]. While
amyloid-B (AB) plaques and neurofibrillary tangles
(NFTs) are pathological hallmarks of AD, many
clinical LOAD phenotypes are shared across other
dementias, including cognitive decline and memory
loss [13-15]. Transcriptome studies have predomi-
nately compared AD samples to normal controls [16].
Using this approach, it is often unclear if the observed
disrupted processes in LOAD are specific to LOAD or
are the result of non-specific general neurodegenera-
tive effects.

This study approaches the problem of distinguish-
ing the processes altered specifically in LOAD from
those generally involved in neurodegeneration. To do
this, we performed whole transcriptome analysis on
temporal pole brain tissue (Brodmann’s Area 38) from
three cohorts: patients with LOAD, cognitively normal
controls, and patients with dementia with Lewy bod-
ies (DLB) which we term “disease controls.” While no
disease control is perfect, DLB samples are excellent
disease controls due to both diseases sharing clinical
characteristics, overlapping affected brain regions, and
“extracellular body” pathologies. That is, LOAD has
A plaques and DLB has Lewy bodies. Similarly, some
of the affected regions, such as the temporal pole region
examined in this study, overlap extensively. The dis-
ease controls allow us to attempt to decipher processes
and genes altered as a result of general dementia from
those specific to the LOAD process.

In this study, we identified LOAD specific tran-
scriptional changes of protein coding and non-coding
RNAs by comparing transcription in LOAD to cogni-
tively normal controls and disease controls. To identify
transcriptional differences, we utilized RNA-seq tech-
nology. RNA-seq allows for the detection of known
and novel isoforms of well-documented genes as
well as non-coding RNAs. Examination of individual
genes and network analysis demonstrates that LOAD
specific transcriptional differences converge upon sev-
eral processes including innate immune response and
myelination. To determine if this transcriptional pro-
cess was disrupted due to altered epigenetic regulation,
we examined DNA methylation and splicing. In this

study, we identify differentially transcribed and spliced
genes within networks and DNA methylation changes
that correlate specifically to LOAD.

MATERIAL AND METHODS
Samples

RNA transcription was investigated using tissue
samples isolated from the temporal pole of a total
of thirty brain samples. Ten samples were collected
from each of the following three cohorts: subjects with
LOAD, cognitively normal controls, and disease con-
trols, subjects with DLB. Samples were extracted from
the temporal pole (Brodmann area 38) of age-matched
Caucasian males (Supplementary Table 1). The mean
(SD) ages were LOAD: 77.4 (£5.7) years; DLB: 79.1
(£5.6) years; cognitively normal controls: 74.6 (+7.8)
years. Samples were frozen and stored at —80°C.

Tissue

All cases underwent a standardized neuropatho-
logical assessment with evaluation of gross and
microscopic findings and quantitative analysis of
Alzheimer-type pathology. LOAD cases were selected
according to dementia status, staged for LOAD pathol-
ogy according to Braak (III, IV), and were positive for
AP and PHF-tau in two brain areas (Brodmann areas
9 and 39) [16].

Semi-quantitative grading of Lewy body pathology
and assignment of Lewy body type were determined
according to the Third CDLB recommendations [17,
18]. Cases of DLB were selected based on the distribu-
tion of Lewy bodies and the severity of Alzheimer-type
pathology. The DLB cases included in the study had
a more extensive neocortical type of distribution that
included the temporal lobe. All of the transitional and
diffuse neocortical cases were from demented sub-
jects. Based on the likelihood categories [17, 18],
the extensive alpha synucleinopathy corresponds to an
intermediate or high likelihood of DLB in this cohort.

Normal control samples were confirmed to be cog-
nitively normal and died from causes unrelated to
neurological disease. Autopsies and neuropathologic
diagnoses were performed in accordance with pub-
lished guidelines by a consultant neuropathologist.
Extracted tissue included both grey and white matter.

RNA and DNA isolation

RNA was isolated from frozen tissue samples
using the QIAGEN Qiashredder and TRIzol reagents
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(Invitrogen). RNA was extracted using the miRNeasy
mini kit (Invitrogen) and each sample was treated with
an on-column DNAse treatment (Invitrogen). RNA
was dissolved in DNase/RNase-free water (Invitrogen)
and concentration was determined using the Qubit Flu-
orometer with the Qubit™ RNA kit. The quality of
the RNA was determined using the Bioanalyzer 2100
(Agilent).

For methylation analysis, genomic DNA was iso-
lated from 24 of the 30 frozen tissue samples used
for transcription studies: eight LOAD patients, eight
cognitively normal controls, and eight DLB patients.
Isolation was carried out using the QIAamp® DNA
Mini and Blood Mini Handbook (Qiagen) in accor-
dance with the manufacturer’s specifications. DNA
concentration was determined using the Qubit Fluo-
rometer with the Qubit™ DNA Broad Range kit. DNA
integrity was assessed using gel electrophoresis. All
RNA and DNA samples were stored at —80°C.

RNA-seq library preparation

RNA-seq libraries were prepared from 10 pg of total
RNA isolated from each sample. The RNA integrity
number (RIN) was determined using the Bioanalyzer
2100, and all samples had a RIN number >6 (Supple-
mentary Table 1). Ribosomal RNA was depleted using
the RiboMinus™ Eukaryote Kit for RNA-seq (Invitro-
gen). Depletion was confirmed using the Agilent RNA
Nano chip and Bioanalyzer 2100. RNA concentrations
were determined using the Qubit™ RNA kit. Approxi-
mately 600 ng of ribosomal depleted RNA was utilized
for library preparation using Script-Seq (Epicentre®)
along with the Phusion® Polymerase enzyme (Kappa
Biosystems). Library completion was confirmed using
the DNA High Sensitivity Kit on the Bioanalzyer 2100
and concentration was determined using the Library
Quantification Kit-Illumina (Kappa Biosystems).

DNA methylation library preparation

Bisulfite conversion of 500ng of genomic DNA
was achieved with the EZ DNA Methylation Gold
kit (Zymo Research). DNA samples were prepared
according to the Illumina©Infinium protocol and
run on the [llumina©Infinium HumanMethylation450
bead chip.

RNA-seq analysis

Libraries were sequenced on the Illumina
HiSeq2000 with an average of 50 million 100

bp paired-end reads being sequenced per library.
Reads were aligned using GSNAP software and only
unique reads were used in analyses [19]. To ensure the
greatest percentage of aligned reads, bar codes were
trimmed off the sequencing read prior to alignment.
Strandedness was assigned based on the Script-seq
library protocol.

To examine transcription and splicing differences,
reads were assembled to transcripts from the Gencode
v15 database to generate count data for each transcript
using SAMtools [20]. To reduce noise and increase
reliability, only transcripts with a count above five
were used in subsequent analysis. Transcripts were
normalized and differences were determined using
the DESeq v1.12.0 software [21]. Splicing differences
were resolved using the DEXSeq v1.12.0 software
[22]. To accurately assess splicing, only genes four
or more exons were examined, which resulted in a
total of 17,076 genes evaluated for splicing differ-
ences. Both of these analyses, as well as downstream
analyses, were carried out using R software, version
3.0.1 (http://www.r-project.org). This data will be pub-
licly available in the Sequence Read Archive (SRA)
database.

DNA methylation analysis

DNA methylation was performed using the ChAMP
software available from bioconductor [23]. All default
parameters were used except that the B-value, which is
the ratio of methylation probes to both un-methylated
and methylated probes, was beta-quantile normalized.
Using the package Limma, a generalized linear model
with disease controls as a covariate, CpG sites were
assessed for differential methylation [24]. This data
will be publicly available in the Gene Expression
Omnibus (GEO) database.

Network analysis

Using Weighted Gene Correlation Network Anal-
ysis (WGCNA), we examined potential networks, as
defined by genes’ co-transcription relationships to each
other [25, 26]. Co-expressed genes can denote poten-
tial functional relationships, and are used to identify
hub gene(s) that are central to a network’s function
[26]. For analysis, we used genes with nominally sig-
nificant (p <0.05) differences in expression between
LOAD cases and cognitively normal controls (total
genes: 2,504). Network visualization was performed
using VisAnt [27]. Pathway analysis was conducted
using the Database for Annotation, Visualization and
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Integrated Discovery (DAVID) [28]. Correlations of
networks between LOAD and DLB were analyzed
using Dunn and Clark on the Cocor R-package [29,
30].

Validation by independent data set replication

To replicate transcription results we used two sep-
arate publically available data sets. In the first data
set, cortex samples from 363 individuals (GSE155222)
were assessed for differential transcription [31]. This
sample consisted of 363 individuals: 176 normal con-
trols and 183 LOAD samples (Supplementary Table 1).
Initially, we adjusted for confounders to account for
age, gender, and gender variables on transcription. To
do this, we used a robust linear regression model for
covariate corrections as equation (2). The residuals
were used for further differential transcription. This
analysis was performed using the MASS packages [32]

(2) transcription =31 PMI + 3, age + 33 gender

In the second data set, which is completely indepen-
dent from the first data set, prefrontal cortex samples
from 227 individuals (GSE44770) were assessed for
differential transcription [33]. This sample consisted
of 127 normal controls and 100 AD samples. Tran-
scription values given were already normalized for age,
gender, batch, and RIN. For both data sets, each gene
was assessed for differential transcription between two
conditions using a two-tailed 7-test with a p-value
threshold of 0.05. All p-values were corrected using
Benjamini—Hochberg False Discovery Rate (FDR) and
this analysis was performed using the multtest R-
package [34].

RESULTS

To examine transcriptional differences in LOAD,
we identified a total of 53,245 genes (19,207 protein-
coding and 34,038 ncRNAs, based on ENCODEV15)
having detectable levels of transcription [35]. Tran-
scription of protein coding genes and each type of
ncRNA [36] was similar between cohorts (Supple-
mentary Fig. 1). While more ncRNA transcripts were
observed than protein-coding transcripts, the average
read depths of ncRNAs were less than protein-coding
genes; aresult observed in previously published whole-
transcriptome studies [37].

Five genes with altered transcription specific to
LOAD

Using DESeq [21], we examined individual genes
for differences in transcription. A total of 2,504 out

of 53,245 genes had nominal differences in transcrip-
tion (p<0.05) between the ten LOAD samples and
ten normal controls (Supplementary Fig. 2). After cor-
recting for multiple testing by False Discovery Rate
(FDR <0.05), 16 of the 2,504 genes differed signif-
icantly between LOAD and normal controls. These
genes consisted of eleven protein-coding genes, four
long intergenic ncRNAs (lincRNAs), and a pseudo-
gene (Table 1a).

To test whether differential transcription of these
sixteen genes is LOAD specific relative to our dis-
ease control, we compared transcription of the genes
to the ten disease controls. Five of the sixteen (four
protein coding and one ncRNA) were still signif-
icant after FDR correction (Table 1b). Two genes
were increased in LOAD (C100rf105 and RARRES?3),
while three genes were decreased in LOAD (DIO2,
ENSG00000249343.1, and WIF1).

These transcriptional findings were corroborated
by two independent, publicly available, microarray
datasets. The first dataset (GSE15522) examined cor-
tex transcription of 363 individuals and the second
dataset (GSE44770) examined transcription in the pre-
frontal cortex of 227 individuals [31, 33]. Independent
analysis of each dataset yielded similar findings with
both datasets having a significant decrease of both
WIFI (Wnt-Inhibitory Factor 1) and DIO2 (Type II
Iodothyronine Deiodinase) in LOAD, whereas RAR-
RES3 (Retinoic Acid Receptor Responder 3) was
significantly increased in LOAD (Fig. 1). C100rf105
was only detectable in the second dataset and its
transcription was similar to our findings in that tran-
scription was significantly increased in LOAD when
compared to controls. ENSG00000249343.1 could not
be verified due to the lack of probes for this gene in
both microarray datasets.

Network analysis reveals myelination specific to
LOAD

To gain insight into the processes disrupted in
LOAD, we performed network analysis on the 2,504
genes that had nominal significance between LOAD
and normal controls. Using Weighted Gene Co-
transcription Network Analysis (WGCNA) [25] on
transcription values of the 2,504 genes revealed that
these genes aggregated into seven networks (Fig. 2).
Each network is referred to by number because
not all predicted networks have a unifying function
[26]. We examined networks altered specifically in
AD. We also investigated the networks altered as a
result of the general neurodegenerative processes by
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Table 1

Transcriptional differences specific to LOAD
A
Gene Symbol Gene Name Log,FC FDR Biotype
ADAMTS?2 ADAM Metallopeptidase with Thrombospondin Type 1 Motif, 2 1.93 0.009 Protein Coding
NRN1 Neuritin 1 —1.285 0.009 Protein Coding
WIF] Wnt Inhibitory Factor 1 —2.015 0.009 Protein Coding
C100rf105 Chromosome 10 Open Reading Frame 105 2.105 0.009 Protein Coding
CDRI1 Cerebellar Degeneration-Related Protein 1 1.933 0.013 Protein Coding
KCNV1 Potassium Channel, Subfamily V, Member 1 —1.293 0.014 Protein Coding
DIO2 Deiodinase, Iodothyronine, Type II —1.180 0.014 Protein Coding
RP5-965F6.2 RP5-965F6.2 1.185 0.014 LincRNA
RPI11-511P7.2 RP11-511P7.2 —2.987 0.014 LincRNA
IFLTDI Intermediate Filament Tail Domain Containing 1 2.158 0.025 Protein Coding
RP11-318G8.1 RP11-318G8.1 2.158 0.025 Pseudogene
SCG2 Secretogranin II —1.333 0.032 Protein Coding
CTD-2275D24.2 CTD-2275D24.2 —1.510 0.032 LincRNA
TXNIP Thioredoxin Interacting Protein 1.845 0.033 Protein Coding
RARRES3 Retinoic Acid Receptor Responder (Tazarotene Induced) 3 1.601 0.033 Protein Coding
CTD-2378E21.1 CTD-2378E21.1 —2.275 0.037 LincRNA
B
CTD-2275D24.2 CTD-2275D24.2 —1.419 3.260 E-05 LincRNA
WIF1 Wnt Inhibitory Factor 1 —1.165 0.012 Protein Coding
C100rf105 Chromosome 10 Open Reading Frame 105 1.319 0.015 Protein Coding
RARRES3 Retinoic Acid Receptor Responder (Tazarotene Induced) 3 0.742 0.066 Protein Coding
DIO2 Deiodinase, Iodothyronine, Type 11 —0.694 0.081 Protein Coding

Transcription was compared between LOAD and cognitively normal controls that showed sixteen transcripts to be significant with a false
discovery rate (FDR) below 0.05 (A). The sixteen genes were then compared between LOAD and disease controls. Five genes were significant

with an FDR below 0.1 (B).

examining networks that were correlated to both
LOAD and the disease controls.

Five of the seven networks are correlated to both
AD and disease controls relative to normal controls
(Fig. 2a). Of these five that correlate to both LOAD
and DLB, network 3 had the strongest association with
LOAD and DLB (r=0.85) followed by networks 4,
5, 6, and 7 (Fig. 2a). Network 3 was enriched for

-

-Logqo P-Value

~

Log,FoldChange

Fig. 1. Differential transcription in LOAD versus normal controls.
Volcano plot for differential gene transcription between 10 cogni-
tively normal controls and 10 LOAD samples. The most significant
genes with differential transcription are shown in red. There are
slightly more genes that are increased in expression in LOAD.

genes involved in behavior networks while networks
4, 5, 6, and 7 were enriched for generation of pre-
cursor metabolites, synaptic transmission, calcium ion
binding, and immune responses, respectively (Supple-
mentary Table 2).

Two of the seven networks were solely associated
with LOAD, suggesting these networks are specific to
AD (Supplementary Fig. 3). One of the LOAD spe-
cific networks, network 2, contained 42 genes and was
enriched for GO pathways involved in innate immune
responses (Benjamini—-Hochberg (BH) p-value =9.5e-
6, see Supplementary Table 2). Network 1 contained
465 genes and had the highest correlation with LOAD
(r=0.62). It was primarily enriched in genes involved
in myelination (BH p-value =5.3e-3, see Supplemen-
tary Table 2). Hub genes are highly connected and are
likely to be instrumental in the organization of a net-
work [38]. Our findings showed ST18 and FRMD4B
to be two prominent hub genes within the myelination
network (Fig. 2b). These two genes have also been
observed in prior studies to be hub genes of myeli-
nation networks disrupted in LOAD [33, 39]. Of the
five genes with altered transcription in LOAD, the
C100rf105, RARRES3, and ENSG0000249343.1 genes
are all located in the myelination network detected
above and WIFI and DIO?2 are functionally related to
the myelination process (see Discussion).
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Fig. 2. Transcriptional differences in LOAD are replicated in two independent data sets. DIO2, RARRES3, and WIFI findings were replicated in
the GSE15222 data set which consists of 363 cortex samples. C100rf105, DIO2, RARRES3, and WIFI were similarly replicated in the GSE44770
data set, which consisted of 227 pre-frontal cortex samples. Each gene was assessed for differential transcription between LOAD and CON
using a two-tailed #-test with a p-value threshold of 0.05. p-values for all genes were below 0.01. Both independent data sets consisted of cohorts

of Caucasian descent.

Further examination of transcription in the myeli-
nation network revealed that 428 of the 465 genes
have increased transcription in LOAD (Supplementary
Table 3). We next examined methylation to determine
if the transcriptional changes in these network genes
correlated to changes in DNA methylation. Using the
Infinium HumanMethylation450 bead array, we iden-
tified 5,147 CpG sites that overlapped the 465 genes in
the myelination network. A total of 1,106 of the 5,147
CpG sites differed between LOAD and both controls
(p <0.05) (Table 2). The amount of altered methyla-
tion within the myelination network was significantly
enriched when compared to the other networks (x2;
p < 1.0e-8). Hypomethylation in LOAD was observed
in 87.3% of the 1,106 CpG sites within the myelination
network (Fig. 3). Similar changes were not observed
in the innate immune network.

DNA methylation located within the gene body is
also known to have a positive correlation with splicing
[40]. To determine if there are splicing changes in the
genes within the myelination network, we examined
differential exon usage (DEU) between LOAD and
both controls [22]. DEU in LOAD was observed in over
25% of genes when compared to both controls. This
finding confirms an earlier study that also examined
LOAD using RNA-seq [8]. Splicing within the myeli-
nation pathway was lower than expected. Our findings
show that only 32% of the genes in the myelination
network have DEU, whereas 37% of genes within all
network genes have DEU (Supplementary Table 5).
These results suggest that hypomethylation within the
gene body influences the decreased splicing observed
in the myelination network.

Hypo/Hyper-methylated CpG sites overlapping genes within the networks

Network Differentially Hypermethylated Hypomethylated
methylated CpG* Total (%) CpGs + (Fold-Change) CpGs — (Fold-Change)
Network 1 1106/5147 (22%) 141 965
Network 2 81/431 (18%) 19 62
Network 3 414/2169 (19%) 89 325
Network 4 1236/7392 (17%) 601 635
Network 5 559/3765 (14%) 280 279
Network 6 704/3843 (18%) 134 570
Network 7 666/3540 (18%) 99 567

Genes with differential methylated CpG sites within genes in the networks are listed in the “Differen-
tially methylated CpG” column along with the total number of CpG sites detected within the network.
The number of differential hypomethylated and hypermethylated sites is listed for each network.
*Differentially methylated CpG sites had a value of p <0.05.
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A | Module Name Group Correlation R* | P-value | Overlap with GO Terms
Network 1 LOAD 0.62 |2.00E-04 Myelination
Network 2 LOAD 0.5 0.03 Innate Immune Response
Network 3 LOAD and DLB 0.85 | 2.00€-03 Behavioral Response
Network 4 LOAD and DLB -0.7 | 2.00E-09 Synaptic Transmisssion
Network 5 LOAD and DLB -0.68 | 3.00E-02 | Generation of Precursor Metabolites and Energy
Network 6 LOAD and DLB 0.52 | 2.00E-05| Immune Response and Antigen Presentation
Network 7 LOAD and DLB 0.53 | 0.003 Glycoproteins
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Fig. 3. Networks specific to LOAD and general neurodegeneration. The 2,504 genes with differential transcription between LOAD and normal
controls aggregated into seven networks (A). Two of these networks were specific to LOAD: (B) Network 1 and (C) Network 2. The hub genes
of each network are labeled and colored blue. Each hub is connected to >20 genes with an r > 0.35. The hub genes in network 2 have at least
10 genes connected to them with an »> 0.15.
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Fig. 4. Hypomethylation in the myelination network. The log 2 fold-change of gene transcription, when comparing LOAD to CON, is plotted
against the log 2 fold-change of DNA methylation averaged across the gene (LOAD versus CON+D.CON). Most of the genes in the network have
decreased methylation and increased transcription (located in the lower right quadrant). Genes with a CpG site that is differentially methylated
are colored blue.
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DISCUSSION

Previous transcriptome studies identified pathways
altered in LOAD either as a specific consequence of
disease or as a result of the effects of general neurode-
generation. While our initial findings included finding
genes that were previously found to be altered in LOAD
(Supplementary Tables 5 and 6), including disease con-
trols allowed us to separate processes disrupted during
the neurodegenerative process from those disrupted as
a direct consequence of LOAD [41].

There are similarities in the presentations of AD and
DLB. AD and DLB are diseases that affect memory
and cause changes in cognition and reasoning [42].
Regions, such as the temporal lobe, which have AP
plaques and NFTs in AD overlap with some of the
regions affected in DLB [43-46]. The onset of DLB is
typically 60 to 85 years of age, similar to LOAD [47].
Clinically, the two diseases are often indistinguish-
able; however, their differences are apparent during
postmortem neuropathological examination. Patholog-
ically, DLB can be identified by the accumulation of
foreign bodies, such as a-synuclein aggregates and
NFTs, within the brain [48]. DLB has a more rapid
progression and causes a decrease in motor function
[42]. While no control is perfect, DLB offers substan-
tial advantages as a disease control.

Our study is one of the first to use whole transcrip-
tome to study transcriptional disruptions in LOAD.
While Twine et al. examined transcription in LOAD
using RNA-seq, our utilization of total RNA permitted
us to observe changes in transcription in both pro-
tein coding and non-coding RNAs [8]. The ability of
RNA-seq to detect novel splice junctions enabled us to
discover that LOAD has a significant amount of alter-
native splicing across the genome and permits us to
determine which processes were greatly affected by
changes in splicing.

The samples used in this study allow us to iden-
tify transcriptional and epigenetic changes prior to the
invasion of NFTs. In addition to the temporal pole tis-
sue being a region where extracellular deposition of
AR plaques (LOAD) and Lewy bodies (DLB) coin-
cide, its use also enabled us to observe transcriptional
changes prior to major visible destruction by NFTs. The
temporal pole region is affected during the mid-stages
(Braak stages 3 and4) of LOAD and was collected, from
patients that died during the early to mid-stage of patho-
logical disease progression. In addition to limiting the
patients to those at a Braak stage of 3 or 4, we also lim-
ited our analysis to examining a male only cohort so as
to minimize confounding factors in so far as possible.

The process of demyelination destroys the myelin
sheath of the nerve, results in damage to nerve con-
duction, and is associated with cognitive decline.
Demyelination naturally occurs during aging; how-
ever, it is significantly increased in LOAD patients
to the extent that its progression has recently been
suggested for preclinical AD diagnosis [49]. While
the extracted autopsy tissue contained both grey and
white matter, several studies which have examined grey
and white matter separately have observed that genes
involved in the myelination process are similarly dis-
rupted in LOAD suggesting that our findings are not
just a result of the mixture of the two tissues [10].
The progression of demyelination spreads along the
same path as the A3 plaque development [50]. Alter-
ations of the myelination network in LOAD have been
detected in two previous studies [33, 39]. In addition
to observing the myelination network that was also
detected in previous studies, our study suggests that
this network is altered specifically in LOAD rather
than as part of the general neurodegenerative process.
Analysis revealed that STI8 (suppression of tumori-
genicity 18) and FRMD4B (FERM domain containing
4B) were prominent hub genes within the myelina-
tion network. These two genes were also hubs in the
myelination networks observed in two independent
studies examining altered transcription in AD [33,
39]. ST18 is a transcription factor that regulates neu-
ronal differentiation. A genome-wide association study
has also found S7/8 to be associated with cognitive
decline in LOAD [51, 52]. Interestingly, we identi-
fied an anti-sense RNA (ENSG00000253551.1) with
complementarity to the intronic region of ST/8 that,
although after FDR it did not reach significance, is
increased in LOAD (p <0.05) when compared to both
controls (Supplementary Table 7). Anti-sense RNAs
can regulate genes with complementarity by binding to
shared regions [53]. This anti-sense was positively cor-
related with ST'18 transcription(r=0.93; spearman’s
test), suggesting altered regulation of S718 in LOAD.
In summary, our findings in combination with two
previous independent studies suggest the myelination
network changes are specific to LOAD.

Examination of individual coding and non-coding
genes also led us to find LOAD specific differences
in five genes involved in the myelination process.
The CI100rf105, RARRES3, and ENSG0000249343.1
genes are all located in the myelination network
detected above. While the functions of CI0orf105
and ENSG0000249343.1 are unknown, RARRES3 is
known to increase in response to inflammation. RAR-
RES3 is also increased in obese patients with type
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II diabetes, a disease that is a risk factor for LOAD
[54]. While not directly in the myelination network,
the functions of WIFI and DIO2 are also related to
myelination. DIO2 activates the thyroid hormone by
converting the prohormone thyroxine (T4) to bioac-
tive 3, 3’, 5-triiodothyronine (T3) [37]. An increase
in thyroxine “activates” myelination [55]. Similarly, a
decrease in WIFI results in increased WNT-pathway
activity an “essential driver” in myelinogenesis path-
ways [56]. Additionally, a recent GWAS has associated
WIF1 with hippocampal volume. Reduced hippocam-
pal size is associated with AD [57] and this could, in
part, be due to the decrease in the myelination facili-
tated by the decrease in WIF'I transcription. Combined,
the network analysis and the individual gene analysis
suggest that disruption of the myelination process is
LOAD specific.

Overall hypomethylation was observed across the
genome in LOAD when compared to both controls.
This finding is consistent with previous studies [58,
59]. In addition to transcription primarily being altered
in the myelination network, significant changes of
methylation also occurred within the network. Inter-
estingly, the ratio of differentially methylated CpG
sites to genes is considerably higher in the myeli-
nation network when compared to other genes. This
hypomethylation corresponds to increased transcrip-
tion observed in the myelination network. Studies have
shown that DNA methylation in the gene body has
a positive correlation with alternate splicing [60]. In
the networks, we observed a statistically significant
increase in the number of differentially methylated
CpG sites in the gene body within the network (53%)
compared to those in genes outside the network (47%)
(x%; p<1.0e-12) and we also observed a decrease in
splicing in the network. These findings suggest an over-
all decrease in transcriptional diversity. While there
is an increased amount of altered methylation within
the myelination network, we found that the effect of
methylation on transcription is weaker in LOAD when
compared to both controls in both the promoter and
the gene body. These findings suggest that could be
pointing out slight alterations in the effects of DNA
methylation within LOAD.

Using RNA-seq allowed us to also examine the
role of ncRNAs within LOAD. When examining all
genes, including protein coding and ncRNAs, for dif-
ferential transcription, the most significant difference
between LOAD and both controls was the ncRNA
ENSG0000249343.1. Half of all genes with altered
transcription in LOAD when compared to DLB are
ncRNAs (Supplementary Fig. 3). Notably, both the

ST18 gene and ST18-AS were increased in LOAD when
compared to normal controls; however, while S718 was
slightly upregulated in LOAD when compared to DLB,
it was ST18-AS that had the most significant increase
in anti-sense RNA transcription between LOAD and
the disease control. These findings suggest that non-
coding RNAs play a significant role in helping to
distinguish dementias and should be a focus for future
study.

In summary, our approach using disease controls
demonstrates that LOAD specific disruptions in tran-
scription converge on genes and networks involved
in myelination. Integrative analysis has also identified
disruptions in DNA methylation within the myelina-
tion network. Interestingly, the networks and genes
altered in LOAD are prominently involved in processes
that are implicated in the progression of AD. The use
of additional, different disease controls could allow
the further honing in on genes specifically altered in
LOAD and offers a very promising avenue for further
investigations.
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