823 research outputs found
Reducing the burden of injury: An intersectoral preventive approach is needed
Injuries constitute the second largest contributor to the Western Cape burden of disease (BoD), after major infectious diseases caused by HIV/AIDS and tuberculosis and ahead of mental health disorders and cardiovascular and childhood diseases. The Provincial Health Department instituted the BoD Reduction Project to improve health surveillance for planning and resource allocation, review risk factors, and prioritise interventions to reduce the overall BoD
Q&A: What is biodiversity?
Publisher PDFPeer reviewe
Employment mobility in high-technology agglomerations: the cases of Oxfordshire and Cambridgeshire
This paper examines labour market behaviour of the highly skilled in high-tech local economies, taking the UK examples of Oxfordshire and Cambridgeshire as case studies. It reports on data from a survey of members of three scientific institutes to compare rates of employee mobility in the two locations and considers the likely explanations and implications of those patterns
The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring
Calculations of equivalent length from an artificial advected tracer provide new insight into the isentropic transport processes occurring within the Antarctic stratospheric vortex. These calculations show two distinct regions of approximately equal area: a strongly mixed vortex core and a broad ring of weakly mixed air extending out to the vortex boundary. This broad ring of vortex air remains isolated from the core between late winter and midspring. Satellite measurements of stratospheric H2O confirm that the isolation lasts until at least mid-October. A three-dimensional chemical transport model simulation of the Antarctic ozone hole quantifies the ozone loss within this ring and demonstrates its isolation. In contrast to the vortex core, ozone loss in the weakly mixed broad ring is not complete. The reasons are twofold. First, warmer temperatures in the broad ring prevent continuous polar stratospheric cloud (PSC) formation and the associated chemical processing (i.e., the conversion of unreactive chlorine into reactive forms). Second, the isolation prevents ozone-rich air from the broad ring mixing with chemically processed air from the vortex core. If the stratosphere continues to cool, this will lead to increased PSC formation and more complete chemical processing in the broad ring. Despite the expected decline in halocarbons, sensitivity studies suggest that this mechanism will lead to enhanced ozone loss in the weakly mixed region, delaying the future recovery of the ozone hole
Persistent Disparities between Recent Rates of Habitat Conversion and Protection and Implications for Future Global Conservation Targets
Anthropogenic conversion of natural habitats is the greatest threat to biodiversity and one of the primary reasons for establishing protected areas (PAs). Here, we show that PA establishment outpaced habitat conversion between 1993 and 2009 across all biomes and the majority (n = 567, 71.4%) of ecoregions globally. However, high historic rates of conversion meant that 447 (56.2%) ecoregions still exhibit a high ratio of conversion to protection, and of these, 127 (15.9%) experienced further increases in this ratio between 1993 and 2009. We identify 41 “crisis ecoregions” in 45 countries where recent habitat conversion is severe and PA coverage remains extremely low. While the recent growth in PAs is a notable conservation achievement, international conventions and associated finance mechanisms should prioritize areas where habitat is being lost rapidly relative to protection, such as the crisis ecoregions identified here
Identifying global centers of unsustainable commercial harvesting of species
Overexploitation is one of the main threats to biodiversity, but the intensity of this threat varies geographically. We identified global concentrations, on land and at sea, of 4543 species threatened by unsustainable commercial harvesting. Regions under high-intensity threat (based on accessibility on land and on fishing catch at sea) cover 4.3% of the land and 6.1% of the seas and contain 82% of all species threatened by unsustainable harvesting and > 80% of the ranges of Critically Endangered species threatened by unsustainable harvesting. Currently, only 16% of these regions are covered by protected areas on land and just 6% at sea. Urgent actions are needed in these centers of unsustainable harvesting to ensure that use of species is sustainable and to prevent further species' extinctions.Peer reviewe
- …