1,376 research outputs found

    Transport coefficients and cross sections for electrons in water vapour: comparison of cross section sets using an improved Boltzmann equation solution

    Get PDF
    This paper revisits the issues surrounding computation of electron transport properties in water vapour as a function of E/n0 (the ratio of the applied electric field to the water vapour number density) up to 1200 Td. We solve the Boltzmann equation using an improved version of the code of Ness and Robson [Phys. Rev. A 38, 1446 (1988)], facilitating the calculation of transport coefficients to a considerably higher degree of accuracy. This allows a correspondingly more discriminating test of the various electron–water vapour cross section sets proposed by a number of authors, which has become an important issue as such sets are now being applied to study electron driven processes in atmospheric phenomena [P. Thorn, L. Campbell, and M. Brunger, PMC Physics B 2, 1 (2009)] and in modeling charged particle tracks in matter [A. Munoz, F. Blanco, G. Garcia, P. A. Thorn, M. J. Brunger, J. P. Sullivan, and S. J. Buckman, Int. J. Mass Spectrom. 277, 175 (2008)]

    Electron Impact Ionization Dynamics of para-benzoquinone

    Get PDF
    Triple differential cross sections (TDCSs) for the electron impact ionization of the unresolved combination of the 4 highest occupied molecular orbitals (4b3g, 5b2u, 1b1g, and 2b3u) of para-benzoquinone are reported. These were obtained in an asymmetric coplanar geometry with the scattered electron being observed at the angles −7.5°, −10.0°, −12.5° and −15.0°. The experimental cross sections are compared to theoretical calculations performed at the molecular 3-body distorted wave level, with a marginal level of agreement between them being found. The character of the ionized orbitals, through calculated momentum profiles, provides some qualitative interpretation for the measured angular distributions of the TDCS

    Positron interactions with water-total elastic, total inelastic, and elastic differential cross section measurements

    Get PDF
    9 págs.; 5 figs.; 4 tabs.© 2014 AIP Publishing LLC. Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions.This work has been supported by the Australian Research Council’s Centre of Excellence Program. G.G. and F.B. would like to acknowledge the Spanish Ministerio de Economıa y Competitividad (project FIS2012-31230). Some financial support through COST Action “Nano-IBCT” is also gratefully acknowledged.Peer Reviewe

    A Potent Peptidomimetic Inhibitor of Botulinum Neurotoxin Serotype A Has a Very Different Conformation than SNAP-25 Substrate

    Get PDF
    SummaryBotulinum neurotoxin serotype A is the most lethal of all known toxins. Here, we report the crystal structure, along with SAR data, of the zinc metalloprotease domain of BoNT/A bound to a potent peptidomimetic inhibitor (Ki = 41 nM) that resembles the local sequence of the SNAP-25 substrate. Surprisingly, the inhibitor adopts a helical conformation around the cleavage site, in contrast to the extended conformation of the native substrate. The backbone of the inhibitor's P1 residue displaces the putative catalytic water molecule and concomitantly interacts with the “proton shuttle” E224. This mechanism of inhibition is aided by residue contacts in the conserved S1′ pocket of the substrate binding cleft and by the induction of new hydrophobic pockets, which are not present in the apo form, especially for the P2′ residue of the inhibitor. Our inhibitor is specific for BoNT/A as it does not inhibit other BoNT serotypes or thermolysin

    Valence and lowest Rydberg electronic states of phenol investigated by synchrotron radiation and theoretical methods

    Get PDF
    P.L.V. and F.F.S. acknowledge the Portuguese National Funding Agency FCT-MCTES through Grant Nos. UID/FIS/00068/2013 and IF-FCT IF/00380/2014. E.L. acknowledges the Brazilian Agency Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and the Science Without Borders Programme for opportunities to study abroad. D.D. acknowledges support from the CaPPA project (Chemical and Physical Properties of the Atmosphere), funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under Contract No. ANR-10-LABX-005 and by the Regional Council "Nord-Pas de Calais" and the "European Funds for Regional Economic Development" (FEDER). M.A.S. would like to acknowledge the Visiting Research Fellow position at The Open University. This work was performed using HPC resources from GENCI-CINES (Grant No. 2015-088620). The Centre de Ressources Informatiques (CRI) of the Universite of Lille also provided computing time. The authors wish to acknowledge the beam time at the ISA synchrotron at Aarhus University, Denmark. We also acknowledge the financial support provided by the European Community's Seventh Framework Programme (No. FP7/2007-2013) CALIPSO under Grant Agreement No. 312284. M.J.B. acknowledges financial support provided through the Australian Research Council (ARC).We present the experimental high-resolution vacuum ultraviolet (VUV) photoabsorption spectra of phenol covering for the first time the full 4.3-10.8 eV energy-range, with absolute cross sections determined. Theoretical calculations on the vertical excitation energies and oscillator strengths were performed using time-dependent density functional theory and the equation-of-motion coupled cluster method restricted to single and double excitations level. These have been used in the assignment of valence and Rydberg transitions of the phenol molecule. The VUV spectrum reveals several new features not previously reported in the literature, with particular reference to the 6.401 eV transition, which is here assigned to the 3s sigma/sigma*(OH)publishersversionpublishe

    A Dynamical (e,2e) Investigation into the Ionization of the Outermost Orbitals of R-Carvone

    Get PDF
    We report an experimental and theoretical investigation into the dynamics of electron-impact ionization of R-carvone. Experimental triple differential cross sections are obtained in asymmetric coplanar kinematic conditions for the ionization of the unresolved combination of the three outermost molecular orbitals (41a-39a) of R-carvone. These cross sections are compared with theoretical cross sections calculated within a molecular 3-body distorted wave (M3DW) framework employing either a proper orientation average or orbital average to account for the random orientation of the molecule probed in the experiment. Here, we observe that the overall scattering behavior observed in the experiment is fairly well reproduced within the M3DW framework when implementing the proper average over orientations. The character of the ionized orbitals also provides some qualitative explanation for the observed scattering behavior. This represents substantial progress when trying to describe the scattering dynamics observed for larger molecules under intermediate-impact energy and asymmetric energy sharing scattering conditions
    corecore