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We derive the exact analytic form for the second-order positron-electron interaction
term in the Faddeev three-body approach which is applicable in the nonrelativistic
high energy region. Although there is no nonintegrable singularity in the six-
dimensional integral form of this amplitude, here the basic difficulty arises from the
presence of complex nonintegral exponents in the components included in the
integrand. Consequently, three brunch cuts must be handled simultaneously. How-
ever, by using an integral representation of the gamma function, these brunch cuts
are removed from the integrand. Expanding the radial parts of the initial and final
wave functions further reduces the second-order positron-electron interaction term
to a one-variable integral in terms of Bessel functions of the third kind. The differ-
ent final closed expressions are ultimately derived in terms of the generalized
hypergeometric functions for different regions of the scattering angle. © 2007
American Institute of Physics. �DOI: 10.1063/1.2712422�

I. INTRODUCTION

The Coulomb interaction plays an important role in atomic and molecular scattering, where
charged particles are involved. The Coulomb potential itself is understood to quite large accuracy.
However, its exact incorporation into the quantum mechanical description of atomic and molecular
interactions poses difficulties due to its long-range form and the problems associated with that.1 It
is noteworthy that the long-range forms of both the Coulomb and gravitational potentials also
create some difficulties in the classical picture as well.2 The energy shell quantities are involved in
describing two-body interactions and the problems associated with them have been investigated in
some detail3 previously. For n�n�2�-body interactions, nonetheless, off-shell energy quantities,
such as the transition matrix, are important in describing the scattering of the charged particles.3

In three-body problems it is convenient to use the integral equation approach rather than
successive iterative solutions of the Schrödinger equation,4 assuming the relevant boundary con-
ditions. In the integral equation approach, the Schrödinger equation governing the three-particle
system is converted into appropriate integral equations such as the Lippmann-Schwinger �LS�
equation, the distorted wave �DW� integral equation, or the Faddeev-Watson-Lovelace �FWL�
equation. Amongst all the integral equation approaches in scattering theory, the LS equation plays
a fundamental role. Nonetheless even the LS equation, in its standard form, has ambiguous
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solutions in three- and many-body collisions. The essential difficulty here is that the singular
nature of the three-body kernel of the equation invalidates the standard methods of obtaining a
solution. Using the language of �perturbation� diagrams �see p. 516 of Ref. 5�, the kernel can be
thought of as having pathological properties due to disconnected diagrams, where the discon-
nected diagrams are those in which one of the three particles propagates freely while the other two
particles interact via a two-body potential. However, nearly all the useful and efficient scattering
formalisms are related to the LS equation either directly or indirectly. For example, among all
existing perturbative methods, the continuum distorted wave �CDW� approximation, introduced by
Cheshire6 in 1964, has received considerable attention because it treats the Coulomb interaction
properly. This approach can be obtained as a first-order term of the conventional DW formalism of
the LS equation,7 as well as a first-order term of the DW theory of Dodd and Greider,8 which is a
genuine three-body treatment that leads to a connected kernel. We note that the approach of Dodd
and Greider8 is also a kind of appropriate rearrangement of the LS equations.

Another integral equation example is the Faddeev methodology and other related formalisms.
In these methods the single three-body LS equation is replaced by a set of three-coupled equations.
The kernel in the coupled equations is a 3�3 matrix which, when squared, contains no discon-
nected diagrams.9 We note that the Faddeev equations can be derived by combining the homoge-
neous and inhomogeneous LS equations,10,11 and we emphasize that the Faddeev and all other
similar equations are a suitable rearrangement of the LS equations.

The application of methods based on the Faddeev and other related formalisms to atomic
collision problems can become tedious. This is mainly because of a difficulty arising from the
complicated nature of the two-body off-shell Coulomb T matrix not having a well-defined on-shell
limit. In fact, the off-shell T matrix of a two-body interacting system provides, in principle, all
necessary information about the system with the on-shell limit of the off-shell T matrix being
related to the scattering amplitude. However, in practice one can show there is no on-shell limit of
the Coulomb T matrix, because of the long-range nature of these types of two-body interactions.12

Even though the long-range nature of the Coulomb potential leads one to expect the propagator of
colliding particles to be distorted even in asymptotic form, in our and Alston’s theoretical studies
the amount of computation is considerably reduced, at the cost of some accuracy of course, by
approximating the asymptotic form of the Coulomb Green’s function by a free Green’s function.

It is worthwhile to note that under some special circumstances the three-coupled equations can
be reduced to just two-coupled equations. For example, for scattering of a particle by a two-body
bound system, Sitenko13 has shown that the Faddeev equations governing the different compo-
nents of the three-body wave function can be reduced to two equations. Also, when the mass of
one particle is either much larger or much smaller than the other two, a simplification of the
Faddeev-Lovelace coupled integral equations is possible.8,14 However, this is not followed in this
study.

In spite of the limitations in the application of the Faddeev formalism to atomic collisions, as
described above, several authors applied that method, in different ways, to solve the three-body
collision problems. A separable approach is one of the approximate forms of the FWL formalism,
which is based on the Alt-Grassberger-Sandhas15 �AGS� method. In this approximation the two-
particle potential is split into a separable term and a nonseparable remainder. The nonseparable
remainder should be small enough for the perturbation series, in powers of this remainder, to
converge rapidly. The Faddeev three-particle integral equations now reduce to the effective two-
particle equations of a LS type which, after having been expanded in partial waves, become
one-dimensional integral equations. Avakov et al.16–19 applied the separable three-body approach
to the class of atomic reactions known as electron transfer, while Alt et al.20–22 used the separable
approximation for calculation of the electron capture differential cross section for proton-hydrogen
scattering. The other method is based on the work of Alston,23–26 which emphasizes the direct
employment of the FWL formalism. Alston has used this method, in a second-order approxima-
tion, for calculation of the charge transfer differential cross section of the 1s→1s transition in the
energetic collision of protons with hydrogen and helium atoms.

The FWL formalism has several advantages. First, it is a full quantum mechanical three-body
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formalism in which there is no classical assumption. Second, the off-shell two-body T matrices are
the principal dynamical ingredients in the FWL approach, rather than the two-body interaction
potentials. In other words the whole three-body process can be decomposed in terms of a set of
two-body interactions, in which the off-shell T matrices are the essential dynamical elements.
Thus, each term in the series obtained by applying the FWL formalisms corresponds to a different
physical process such as direct collisions, breakup, and the rearrangement process. Note that each
term still contains an infinite-order perturbation series in the treatment of each of the individual
scatterings. Moreover, the replacement of potentials with transition operators affords the highest
extension in the Born approximations. The third advantage with the FWL formalism is the ability
to deal with forward-angle as well as the large-angle projectile scattering within the same formal-
ism, while finally contributions from terms involving the internuclear potentials are also easily
assessed in a FWL formalism.

The importance of the Faddeev approach lies in the fact that the kernel of the once iterated
Faddeev equations is connected, when the interactions of the three-body system satisfy some
reasonable requirements.27 This kernel is of the Hilbert-Schmidt class, for all but the physical
values of energy. As the energy approaches the physical cut, Faddeev28 has shown that the fifth
power of the kernel is compact and without singularities in a certain Banach space of continuous
functions. Therefore, the Faddeev equation has unique solutions and the series associated with the
FWL formalism are convergent. We should also remember that the convergence of the Born series
and some of the perturbative series based on the Born approximation are unknown as yet.29 On the
other hand, the FWL formalism can easily be generalized to higher N-body processes as well as
three-body problems.

In this paper, we consider positronium formation in the collision of positrons with atomic
hydrogen as being a three-body reaction and we find an exact form for the second-order positron-
electron interaction amplitude. The method is applicable to high energy, but nonrelativistic, charge
exchange where the speed of the projectile is higher than the speed of the electrons in the target by
one to two orders of magnitude. The interaction amplitude under the FWL approach up to the
second order,5,8,9 assuming that the state of the initial channel is �i� and the final channel is �f �, can
be written as

�1�

where Vxy, Txy, and G0
�+� are the two-body interaction potential, the two-body transition matrix, and

the free Green’s operator, respectively. The second-order interaction amplitude therefore includes
five terms which are represented using Feynman diagrams in Fig. 1. The first two of these terms
are first-order terms, while the other three terms are the second-order terms. Here we will specifi-
cally discuss the third term �Ae

�2��, which we denote as the second-order positron-electron term. In
addition we will also find a closed form for it in this paper. Note that discussion on other terms
will be presented in future reports.

In Sec. II, we define the notation used in this paper. A closed form for the second-order
positron-electron interaction amplitude is subsequently derived in Sec. III. This new form enables
us to calculate the second-order positron-electron amplitude quite simply with a personal com-

FIG. 1. The Feynman �perturbation� diagrams associated with the five terms in the FWL amplitude for charge exchange.
The particles and the interaction potential are denoted by horizontal and vertical lines, respectively. The empty �filled�
ellipses represent the transition matrix for the three �two�-body system. However, the open circles are representative of the
initial and final bound states. Each diagram indicates one of the terms in Eq. �1�.

033506-3 Positronium formation as a three-body reaction J. Math. Phys. 48, 033506 �2007�

Downloaded 22 Apr 2008 to 129.96.237.230. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



puter, thereby saving dramatically on the computational cost of the calculations. Concluding
remarks and a discussion of our framework are given in Sec. IV. Note that a.u. are used throughout
the manuscript.

II. DEFINITIONS

Let us assume that there are three interacting particles, P, T, and e, with masses �charges� of
1 �+1�, MT �ZT�, and 1 �−1�, respectively. We shall also distinguish between the effective charge
�Z� and the asymptotic charge �Za� of the bound system. A free particle P is initially incident on
the two-body bound system �T and e� with an incoming velocity vi and momentum Ki. This
particle then scatters off the bound system and in doing so “picks up” the electron to form a new
bound system, positronium, with an outgoing velocity v f and momentum K f, while T remains free.
The energy of the initial �final� bound system is �i�� f�. This process is a rearrangement channel
and it is usually called electron capture or a charge transfer collision. Let k, k�, and E be the initial
channel momentum, the final channel momentum, and the channel energy of a two-body interac-
tion, respectively. In the case of a nonrelativistic high energy projectile, the transition matrix has
been simplified previously23 as

T�k,k�;E� = − 2�Q�Za,k;E�Q�Za,k�;E�fk,k�
C �E� , �2�

where the off-the-shell factor Q�Za ,k ;E� and the Coulomb interaction amplitude fk,k�
C �E� are

Q�Za,k;E� = e��a/2��1 + i�a���2�E − k2�/8�E�−i�a
�3�

and

fk,k�
C �E� = 2Ze2i�0�8�E�−i��k − k��−2−2i�, �4�

respectively, and the Coulomb phase shift for the lth phase shift is defined as

�l = arg ��l + 1 − i��, l = 0,1,2, . . . . �5�

The reduced mass of the two interacting particles is denoted by �. Also, the Sommerfeld param-
eters are defined as

� = Z/v �6�

and

�a = Za/v. �7�

Thus, the final form of the transition matrix will be

T�k,k�;E� = − 4�Ze��a ��1 + i�a�2��1 − i��
��1 + i��

�8�E�−i�+2i�a
�2�E − k2�−i�a

��2�E − k�2�−i�a
�k − k��−2+2i�. �8�

To simplify some of the coming formulas, we define the quantities 	 j j�
a and 	 j j� as

	 j j�
a = j�P

a + j��T
a �9�

and

	 j j� = j�P + j��T �10�

for positive and negative values of j and j�. Note that the Sommerfeld parameters associated with
the target ��T and �T

a� and the projectile ��P and �P
a � correspond to the effective or asymptotic
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charge and are defined by Eqs. �6� and �7�. The wave functions for the initial and final bound
system in the momentum representation are


̃state�k� � 
̃nlm�k� = Rnl�k�Ylm�k̂� , �11�

where Rnl�k��Ylm�k̂�� is the radial �angular� part of it. The radial part of the wave function has the
simple form

Rnl�k� = Nnl��n� 	
s=0

n−l−1

Ask
l�k2 + �n

2�−s−l−2, �12�

where As is the expansion coefficient,

Nnl��n� =
2n4l+5�n − l − 1�!
��n + 1�!

l!�n
�2l+5�/2 �13�

and

�n = 
− 2��n =
�Z

n
. �14�

III. THE POSITRON-ELECTRON SECOND-ORDER AMPLITUDE

As was discussed previously, there are five terms in Eq. �1� and we are interested in the third
term, the positron-electron second-order amplitude, namely, �f �TTeG0

�+�TPe�i�. Let us now consider
a three-body system composed of a bound subsystem of two particles with the relative position
vector r and a free particle with position vector R with respect to the center of mass of the bound
subsystem. The geometry of the scattering channel is presented in Fig. 2 as the Jacobi coordinates.
The coordinate and momentum representations of the system �excluding the spin state� in the s
channel are defined as:

�r,R�s� = 
s�r�eiKs·R

and

�k,K�s� = �2��9/2
̃s�k�
�K − Ks� ,

where 
s�r� �
̃s�k�� is the wave function of the bound subsystem �its momentum conjugate� and
Ks is the free particle momentum state.

Integrations over the electron momentum in the initial bound subsystem ki and the final bound
system k f are simplified by transformation to the rP and RP frame and rT and RT frame, respec-
tively. Substituting the initial and final wave functions, the third term in Eq. �1� would be con-
verted into integral form in the momentum representation as

FIG. 2. The Jacobi coordinates for the three particles T, P, and e in �a� the initial and �b� the final channels.
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Ae
�2� = �2��−3� dk fdki
̃ f

*�k f�
̃i�ki��k f,K f�TTeG0
�+�TPe�ki,Ki� . �15�

We will find the inner term,

M1 = �k f,K f�TTeG0
�+�TPe�ki,Ki��2��−6� dk1dK1�k f,K f�TTe�k1,K1��k1,K1�G0

�+�TPe�ki,Ki� ,

�16a�

by changing variables from the initial and final Jacobi coordinates to the internuclear coordinates
described in Fig. 2, and the result will be

M1 = �2��−6� dk1dK1�k f +
1

2
K f,− k f +

1

2
K f�TTe�k1,K1


��k1 − K1,k1 + K1�G0
�+�TPe�1

2
�ki − Ki�,ki + Ki
 . �16b�

Implementing some simple algebraic rearrangement of the transition matrices, Eq. �16b� reduces
to

M1 = �2��−6� dk1dK1TTe�k f +
1

2
K f,k1;Ef�G0

�+��Ei�TPe�k1 − K1,
1

2
�ki − Ki�;Ei�

�
�− k f +
1

2
K f − K1�
�k1 + K1 − ki − Ki� ,

leading to the final result as

M1 = TTe�k f +
1

2
K f,ki + k f − K;Ef�G0

�+��Ei�TPe�k f +
1

2
ki +

1

2
J,

1

2
�ki − Ki�;Ei� . �16c�

Substituting M1 into Eq. �15�, the second-order nuclear-electronic amplitude is

Ae
�2� = �2��−3� dk fdki
̃ f

*�k f�
̃i�ki�TTe�k f +
1

2
K f,ki + k f − K;Ef�

�G0
�+��Ei�TPe�k f +

1

2
ki +

1

2
J,

1

2
�ki − Ki�;Ei� , �17a�

where the free Green’s operator is

G0
�+��Ei� = �Ei − �k f +

1

2
ki −

1

2
J�2

+ i��−1

, � → 0+ �17b�

or

G0
�+��Ei� = G0

�+��Ef� = �Ef − �ki + k f − K�2/2 + i��−1, � → 0+. �17c�

Here, the momenta K�=K f /2−Ki� and J�=Ki−K f� are the momentum transfer of the projectile
and the target, respectively.

We shall now substitute the transition matrices and the free Green’s operator into Eq. �17a� to
find a more practical expression for the scattering amplitude Ae

�2�. Incorporating Eq. �2�, it is
possible to simplify the transition matrices TTe and TPe as
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TTe�k f +
1

2
K f,ki + k f − K;Ef�

= − 2�Q�ZT
a,k f +

1

2
K f ;Ef�Q�ZT

a,ki + k f − K;Ef�fkf+�1/2�Kf,ki+kf−K
C �Ef� �18�

and

TPe�k f +
1

2
ki +

1

2
J,

1

2
�ki − Ki�;Ei�

= − 2�Q�ZP
a ,k f +

1

2
ki +

1

2
J;Ei�Q�ZP

a ,
1

2
�ki − Ki�;Ei� fkf+�1/2�ki+�1/2�J,�1/2��ki−Ki�

C �Ei� ,

�19�

respectively. The transition matrices are further simplified by substituting the corresponding rela-
tionships for Q�Za ,k ;E� and fk,k�

C �E�, from Eqs. �3� and �4�, as

TTe�k f +
1

2
K f,ki + k f − K;Ef�

= − 4�ZTe�	01
a

�8Ef�−i	01+i	02
a ��1 + i	01

a �2��1 − i	01�
��1 + i	01�

��2Ef − �k f + K f/2�2�−i	01
a

�2Ef − �ki + k f − K�2�−i	01
a

�ki + J�−2+i	02 �20�

and

TPe�k f +
1

2
ki +

1

2
J,

1

2
�ki − Ki�;Ei�

= − 4�ZPe�	10
a

�4Ei�−i	10+i	20
a ��1 + i	10

a �2��1 − i	10�
��1 + i	10�

��Ei − �k f + ki/2 + J/2�2�−i	10
a

�Ei − ��ki − Ki�/2�2�−i	10
a

�k f − K�−2+i	20. �21�

There are four arguments that should be found and replaced into Eqs. �20� and �21� as

2Ef − �k f + K f/2�2 = v f
2 − kf

2 + 2k f · v f + 2� f − kf
2 − v f

2 − 2k f · v f = 2�� f − kf
2� , �22�

Ei − ��ki − Ki�/2�2 =
vi

2

4
−

ki · vi

2
−

ki
2

4
+ �i −

ki
2

4
−

vi
2

4
+

ki · vi

2
= ��i − ki

2/2� , �23�

Ef − �ki + k f − K�2/2 = G0
−1�Ef� , �24�

and

Ei − �k f + ki/2 − J/2�2 = G0
−1�Ei� . �25�
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Also, we shall make use of the following:

Ef � E − v f
2/2 � v f

2/2 �26�

and

Ei � E − vi
2/4 � vi

2/4. �27�

Substituting Eqs. �22�–�27� into Eqs. �20� and �21�, and in turn substituting these into Eq. �17a�,
the amplitude is further simplified as follows:

Ae
�2� = C1� dk fdki
 f

*�k f�
i�ki��kf
2 − � f�−i	01

a
�ki

2 − 2�i�−i	10
a

�G0
�+��1+i	11

a
, �28�

where

C1 = � 2

�
�ZPZTe�	22

a
2−i	02+i	12

a
vi

−i	20+i	40
a

v f
−i	02+4i	01

a

�
��1 + i	01

a �2��1 − i	01���1 + i	10
a �2��1 − i	10�

��1 + i	01���1 + i	10�
J−2+i	02K−2+i	20.

We also have to simplify the free Green’s function, Eq. �17b� or �17c�, as

G0
�+��Ef� = 2�� + 2ki · K − 2k f · J + i��−1, �29�

where

� = v f
2 − K2 + 2� f . �30�

The amplitude in Eq. �28� now simplifies to the new form

Ae
�2� = 21+i	11

a
C1� dk fdki
 f

*�k f�
i�ki��kf
2 − � f�−i	01

a
�ki

2 − 2�i�−i	10
a

�� + 2ki · K − 2k f · J + i��−1−i	11
a

.

�31�

There are three branch cuts in the complex space due to the presence of nonintegral exponents in
each factor. To avoid the cut lines, we make use of the identity

�−1−	 =
1

��1 + 	��0

�

dyy	e−�y for Re��� � 0 and Re�	� � − 1, �32�

and we substitute it into Eq. �31�. Then the new form for the amplitude will be

Ae
�2� = C2�

0

�

dyyi	11
a

ei�y� dki
i�ki�e2iki·Ky�ki
2 + �ni

2 �−i	10
a � dk f
 f

*�k f�e−2ikf·Jy�kf
2 + �nf

2 �−i	01
a

,

�33�

where C2= �21+i	11
a

exp�−i�� /2��1+ i	11
a �� /��1+ i	11

a ��C1.
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We will further make use of the relation

eik·r = 	
l=0

�

	
m=−l

+l

iljl�kr�Ylm
* �k̂�Ylm�r̂� . �34�

Substituting the expansion form of eik·r into the two inner integrals of Eq. �33� and performing the
angular integrations over the spherical harmonics, one gets

Ae
�2� = �4��2ili−lfYlimi

�K̂�Ylfmf

* �Ĵ�C2�
0

�

dyyi	11
a

ei�y� dkiki
2Rnili

�ki��ki
2 + �ni

2 �−i	10
a

jli
�2Kkiy�

�� dkfkf
2Rnflf

�kf��kf
2 + �nf

2 �−i	01
a

jlf
�2Jkfy� . �35�

Changing now the variable y to a new variable x=Ky, the amplitude takes an even simpler form
as

Ae
�2� = C3�

0

�

dxxi	11
a

eiax� dkiki
2Rnili

�ki��ki
2 + �ni

2 �−i	10
a

jli
�kix�

�� dkfkf
2Rnflf

�kf��kf
2 + �nf

2 �−i	01
a

jlf
�bkfx� , �36�

where C3= �4��2�2K�−1−i	11
a

ili−lfYlimi
�K̂�Ylfmf

* �Ĵ��C2, a=� /2K, and b=J /K. Replacing the radial

part of the initial and final state wave functions, from Eq. �12�, into Eq. �36� one arrives at the
following result for the amplitude:

Ae
�2� = C3Nnili

��ni
�Nnflf

��nf
��

0

�

dxxi	11
a

eiax 	
sf=0

nf−lf−1

	
s=0

ni−li−1

Asf
Asi� dkiki

2+ll�ki
2 + �ni

2 �−2−si−li−i	10
a

jli
�kix�

�� dkfkf
2+lf�kf

2 + �nf

2 �−2−sf−lf−i	01
a

jlf
�bkfx�

= C3Nnili
��ni

�Nnflf
��nf

� 	
sf=0

nf−lf−1

	
s=0

ni−li−1

Asf
Asi�

0

�

dxxi	11
a

eiaxIlisi

	10
a

��ni
,x�Ilfsf

	01
a

��nf
,bx� , �37�

where

Ils
	 ��,x� = �

0

�

dk
kl+2jl�kx�

�k2 + �2�l+s+2+i	 . �38�
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We now use the integral �Eq. �6.565.4� of Ref. 30�

�
0

�

dk
k
+1J
�ku�

�k2 + �2��+1 =
u��
−�

2���� + 1�
K
−���u� ,

�39�

− 1 � Re�
� � 2 Re��� +
3

2

and change the Bessel function to a spherical Bessel function �i.e., jl�z�=
� /2zJl+1/2�z��. There-
fore, the integral Ils

	 �� ,x� takes the following form:

Ils
	 ��,x� =

2−�l+s+i	+3/2��1/2

��l + s + 2 + i	�
�−1/2+s+i	x1/2+l+s+i	K−1/2−s−i	��x� . �40�

We then substitute the result from Eq. �40� into Eq. �36� and arrive at the amplitude as

Ae
�2� = 	

sf=0

nf−lf−1

	
s=0

ni−li−1

C4�
0

�

dxxli+lf+si+sf+i	11
a +1eiaxK−1/2−si−i	10

a ��ni
x�K−1/2−sf−i	01

a ��nfbx� �41�

for

C4 = �
2−�li+lf+si+sf+i	11

a +3�Nnili
��ni

�Nnflf
��nf

�

��li + si + 2 + i	10
a ���lf + sf + 2 + i	01

a �
blf+sf+i	01

a +1/2��ni
�−si−i	10

a −1/2��nf
�−sf−i	01

a −1/2Asi
Asf

C3.

The condition a=0 gives rise to the “Thomas peak.”31 We now expand the exponent eiax in Eq.
�41� as

Ae
�2� = 	

sf=0

nf−lf−1

	
s=0

ni−li−1

C4	
m=0

�
�ia�m

m!
�

0

�

dxxli+lf+si+sf+m+i	11
a +1K−1/2−si−i	10

a ��ni
x�K−1/2−sf−i	01

a ��nf
bx� ,

�42�

where we denote the inner integral as

Fnili,nflf,	;si,sf,m
��ni

,�nf
� = C4�

0

�

dxx1+li+lf+i	11
a +si+sf+mK−1/2−si−i	10

a ��ni
x�K−1/2−sf−i	01

a ��nf
bx� .

�43�

Let us also make use of the following integral �Eq. �6.576.4� of Ref. 30�.

�
0

�

dxx−�K��px�K��qx�

=
q����1 + � + � − ��/2����1 + � − � − ��/2����1 − � + � − ��/2����1 − � − � − ��/2�

22+�p�−�+1��1 − ��

�2F1�1 + � + � − �

2
,
1 + � − � − �

2
;1 − �;1 − q2/p2�,Re�1 − � ± � ± �� � 0, Re�p + q� � 0.

�44�

The confluent hypergeometric series 2F1 converges for �1−q2 / p2 � �1,32 and Eq. �44� is symmetric
with respect to the indices ��p� and ��q�. Therefore, the convergent form of the integral
Fnili,nflf,	;si,sf,m

��ni
,�nf

� is deduced as
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Fnili,nflf,	;si,sf,m
��ni

,�nf
� = C5

2−4+mblf

��nf
�1+lf+2sf+i	02

a
��ni

�1+2li+lf+2si+i	20
a +m

� 2F1�1 + li + lf + m

2
,
2 + li + lf + 2si + i	20

a + m

2
;

2 + li + lf + si + sf + i	11
a + m;1 −

b2�nf

2

�ni

2 � �45�

for 0�b2�nf

2 /�ni

2 �2 or

Fnili,nflf,	;si,sf,m
��ni

,�nf
� = C5

2−1+m�b�−1−li−m

��nf
�2+li+2lf+2sf+i	02

a +m��ni
�1+li+2si+i	20

a

� 2F1�1 + li + lf + m

2
,
2 + li + lf + 2sf + i	02

a + m

2
;

2 + li + lf + si + sf + i	11
a + m;1 −

�ni

2

b2�nf

2 � �46�

for 0��ni

2 /b2�nf

2 �2. We are also assuming C5 to be

C5 = �Nnili
��ni

�Nnflf
��nf

�Asi
Asf

C3

�
�� �1+li+lf+m�

2 ��� �2+li+lf+2si+i	20
a +m�

2 ��� �2+li+lf+2sf+i	02
a +m�

2 ��� �3+li+lf+2si+2sf+i	22
a +m�

2 �
��li + si + 2 + i	10

a ���lf + sf + 2 + i	01
a ���2 + li + lf + si + sf + i	11

a + m�
.

The convergence conditions of the two forms of the integral Fnili,nflf,	;si,sf,m
��ni

,�nf
� are such that

it is always convergent. Therefore, the final form for the positron-electron second-order amplitude
is

Ae
�2� = 	

sf=0

nf−lf−1

	
si=0

ni−li−1

	
m=0

�
�ia�m

m!
Fnili,nflf,	;si,sf,m

��ni
,�nf

� . �47�

We denote the inner summation over m by Inili,nflf,	;si,sf
��ni

,�nf
� as

Jnili,nflf,	;si,sf
��ni

,�nf
� = 	

m=0

�
�ia�m

m!
Fnili,nflf,	;si,sf,m

��ni
,�nf

� . �48�

This summation can be written in terms of the �two-variable� generalized hypergeometric function
F4. To this end, one can use the transformation formulas for confluent hypergeometric series, i.e.,
Eqs. �9.131.2� and �9.132.1� of Ref. 30, in Eqs. �45� and �46�, respectively, and then insert those
results into Eq. �47�. Expanding the confluent hypergeometric functions, in terms of the powers of
their variables, separating the odd and even powers of a, writing the m! in terms of the gamma
function, and, finally, doing some mathematical manipulations, the following expressions for
Inili,nflf,	;si,sf

��ni
,�nf

� can be derived:
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Jnili,nflf,	;si,sf
��ni

,�nf
� = 2−1+li+lf+si+sf+i	11C4��ni

�−2−li−lf−si−sf−i	11
a �b�nf

�ni

�1/2+sf+i	01
a

����−
1

2
− sf − i	01

a ���3 + li + lf

2
+ si + sf + i	11

a ���1 +
li + lf

2
+ sf + i	01

a �
�F4�3 + li + lf

2
+ si + sf + i	11

a ,1 +
li + lf

2
+ sf + i	01

a ;
1

2
,
3

2

+ sf + i	01
a ;� ia

�ni

�2

,�b�nf

�ni

�2� + �b�nf

�ni

�−1−2sf−i	02
a

��1

2
+ sf + i	01

a �
���2 + li + lf

2
+ si + i	10

a ���1 + li + lf

2
�F4�1 +

li + lf

2

+ si + i	10
a ,

1 + li + lf

2
;
1

2
,
1

2
− sf − i	01

a ;� ia

�ni

�2

,�b�nf

�ni

�2�
+

2ia

�ni

��−
1

2
− sf − i	01

a ���2 +
li + lf

2
+ si + sf + i	11

a �
���3 + li + lf

2
+ sf + i	01

a �F4�2 +
li + lf

2
+ si + sf + i	11

a ,
3 + li + lf

2

+ sf + i	01
a ;

3

2
,
3

2
+ sf + i	01

a ;� ia

�ni

�2

,�b�nf

�ni

�2� +
2ia

b�nf

�b�nf

�ni

�−2sf−i	02
a

���1

2
+ sf + i	01

a ���3 + li + lf

2
+ si + i	10

a ���1 +
li + lf

2
�

�F4�3 + li + lf

2
+ si + i	10

a ,1 +
li + lf

2
;
3

2
,
1

2
− sf − i	01

a ;� ia

�ni

�2

,�b�nf

�ni

�2��
�49�

and

Jnili,nflf,	;si,sf
��ni

,�nf
� = �− 2�C4�− 2ia

�ni

�−1−li−lf��− 2ia

�ni

�−2−2si−2sf−i	22
a

���−
1

2
− si − i	10

a ���−
1

2
− sf − i	01

a ���3 + li + lf + 2si + 2sf + i	22
a �

�F4�3 + li + lf

2
+ si + sf + i	11

a ,2 +
li + lf

2
+ si + sf + i	11

a ;
3

2
+ si + i	10

a ,
3

2

+ sf + i	01
a ;��ni

ia
�2

,�b�nf

ia
�2� + �− 2ia

�ni

�−1−2sf

��1

2
+ si + i	10

a �
���−

1

2
− sf − i	01

a ���2 + li + lf + 2sf + i	02
a �F4�1 +

li + lf

2
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+ sf + i	01
a ,

3 + li + lf

2
+ sf + i	01

a ;
1

2
− si − i	10

a ,
3

2
+ sf + i	01

a ;��ni

ia
�2

,�b�nf

ia
�2�

+ �− 2ia

�ni

�−1−2si−i	20
a �b�nf

�ni

�−1−2sf−i	02
a

��−
1

2
− si − i	10

a ���1

2
+ sf + i	01

a �
���2 + li + lf + 2si + i	20

a �F4�1 +
li + lf

2
+ si + i	10

a ,
3 + li + lf

2
+ 2si + i	10

a ;
3

2

+ si + i	10
a ,

1

2
− sf − i	01

a ;��ni

ia
�2

,�b�nf

ia
�2�

+ �b�nf

�ni

�−1−2sf−i	02
a

��1

2
+ si + i	10

a ���1

2
+ sf + i	01

a ���1 + li + lf�

�F4�1 + li + lf

2
,1 +

li + lf

2
;
1

2
− si − i	10

a ,
1

2
− sf − i	01

a ;��ni

ia
�2

,�b�nf

ia
�2�� .

�50�

The first expression, Eq. �49�, is valid for a range of scattering angles in which �v2−K2−�nf
�

�2K
�ni
−2J
�nf

, while the second one, Eq. �50�, is applicable in a range of scattering angles
which satisfy the inequality �v2−K2−�nf

� �2K
�ni
+2J
�nf

. Therefore, the exact analytic form
for the second-order positron-electron interaction term in the Faddeev three-body approach can be
written in a closed form as follows:

Ae
�2� = 	

sf=0

nf−lf−1

	
si=0

ni−li−1

Jnili,nflf,	;si,sf
��ni

,�nf
� . �51�

IV. DISCUSSION AND CONCLUSIONS

Starting from the Faddeev equations, we have obtained a closed form expansion for the
second-order positron-electron amplitude. The importance of the second-order positron-electron
amplitude lies in the fact that it provides the fully quantum mechanical description of the Thomas
peak. This term is simplified to a summation in terms of the confluent hypergeometric function

2F1. If one sets a=0 in Eq. �41� and performs the procedure leading to Eq. �47�, the result will be
the same as the term for m=0. The final form of the amplitude is expressed as summations of the
two-variable generalized hypergeometric functions F4. Each expression is valid for a definite
region of the scattering angles.

The calculations are performed on a personal computer �PC� using MATHEMATICA, and a set of
results are plotted in Fig. 3. In Fig. 3, parts �a� and �b�, the absolute values and the phase of Ae

�2�

are, respectively, plotted against the scattering angle, for the collision of 50 keV positrons with
atomic hydrogen. Depending on the phase of the other amplitudes in Eq. �1�, the constructive or
destructive effect of Ae

�2� on the other terms can be understood. Note that as claimed in the text, the
calculations are valid over all scattering angles. Each data point was calculated in a fraction of a
minute, so that the procedure we have outlined here is dramatically cost effective. Finally, we note
that in this example, it was assumed that both atomic hydrogen and the final positronium were in
a 1s state.
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