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SUMMARY

Botulinum neurotoxin serotype A is the most lethal of
all known toxins. Here, we report the crystal structure,
along with SAR data, of the zinc metalloprotease do-
main of BoNT/A bound to a potent peptidomimetic in-
hibitor (Ki = 41 nM) that resembles the local sequence
of the SNAP-25 substrate. Surprisingly, the inhibitor
adopts a helical conformation around the cleavage
site, in contrast to the extended conformation of the
native substrate. The backbone of the inhibitor’s P1
residue displaces the putative catalytic water mole-
cule and concomitantly interacts with the ‘‘proton
shuttle’’ E224. This mechanism of inhibition is aided
by residue contacts in the conserved S10 pocket of
the substrate binding cleft and by the induction of
new hydrophobic pockets, which are not present in
the apo form, especially for the P20 residue of the
inhibitor. Our inhibitor is specific for BoNT/A as it
does not inhibit other BoNT serotypes or thermolysin.

INTRODUCTION

Neurotoxins produced by the genus Clostridium are potent

chemodenervating zinc-dependent proteases that prevent the

Ca2+-triggered release of acetylcholine in neuromuscular junc-

tions by cleaving one of three SNARE proteins (Schiavo et al.,

1992; Blasi et al., 1993a, 1993b). Hydrolysis of these target pro-

teins renders them noncompetent for facilitating the membrane

fusion step that takes place before acetylcholine release in the

synaptic cleft. Because their use as therapeutic and cosmetic

agents has become increasingly widespread, a concomitant

increased risk of accidental overdosing can be expected. In

addition, since botulinum neurotoxins (BoNTs) can be easily pro-

duced and delivered via aerosol medium, these agents are con-

sidered to be among the most deadly of all potential bioweapons

(Josko, 2004). Therefore, the need for potent and effective inhib-

itors is a high priority. In this regard, peptidomimetics and hy-
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droxamic acid-based inhibitors have been developed that dis-

play inhibitory effects in the high nM range for the light chain of

the BoNT serotype A (BoNT/A LC) (Boldt et al., 2006; Burnett

et al., 2007; Kumaran et al., 2008; Silvaggi et al., 2008). Com-

pounds that contain zinc-coordinating sulfhydryl moieties might

potentially inhibit host zinc proteases thereby making them poor

therapeutic leads. The characteristically poor pharmacokinetics

of hydroxamates, their instability, and their reported toxicity,

which is likely due to their inhibition of an array of metallopro-

teases, also make them problematic as therapeutic agents (Rao,

2005; Suzuki and Miyata, 2005).

In this study, we report the crystal structure of a tight complex

between an active form of BoNT/A LC and a pseudopeptide

inhibitor that mimics the 7-residue QRATKML sequence of the

206-residue SNAP-25, the natural substrate of the BoNT/A LC

(Blasi et al., 1993a), near the cleavage site (Figures 1A and 1B).

This inhibitor, referred herein as I1, is the most potent non-zinc-

chelating, non-hydroxamate-based antagonist reported to date,

with a Ki = 41 nM. When tested against serotypes B, D, E, F, and

thermolysin, I1 did not display any detectable inhibition in our

assays, indicating that its inhibitory action is BoNT/A specific.

Our structure reveals a 310 helical backbone conformation for

the peptide inhibitor bound to the active site of BoNT/A LC.

This is in sharp contrast to the extended conformation of bound

SNAP-25 observed in the BoNT/A LC[E224Q,Y366F]:SNAP-25

complex (Breidenbach and Brunger, 2004). The inhibitor induces

binding pockets in BoNT/A LC that are not found in either the apo

BoNT/A LC or the BoNT/A LC[E224Q,Y366F]:SNAP-25 complex.

The information gained from these new, induced pockets, to-

gether with additional binding surfaces identified in the vicinity

of the I1-binding sites, will be useful for the development of effica-

cious antibotulinum drugs.

RESULTS AND DISCUSSION

The crystal structures of both free and I1-bound wild-type BoNT/

A LCs were determined by molecular replacement (see Table 1

and Experimental Procedures). All seven residues of the I1 inhib-

itor could be readily assigned on the basis of the highly interpret-

able, observed difference electron-density map (Figure 1C). The
All rights reserved
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overall architecture, secondary structural elements, as well as

the conformation of the zinc-coordinating residues in the active

site of I1-bound BoNT/A LC, remain essentially unaltered relative

to the apo form of the protease crystallized under the same con-

ditions. This is indicated by an RMSD of 0.83 Å over all a carbons

of both structures of the enzyme, as well as by comparisons to

other reported BoNT/A LC structures (Figure 2).Nonetheless,

binding of I1 is accompanied by significant conformational

changes in the 60, 250, and 370 loops, confirming an observa-

tion that the BoNT/A LC active site has a high degree of ‘‘plastic-

ity,’’ as proposed previously (Kukreja and Singh, 2005; Burnett

et al., 2007; Silvaggi et al., 2007). With respect to bound I1, the

P20-P50 residues adopt a compact, 310 helical conformation,

with the backbone oriented such that its analogous scissile

bond (i.e., the bond between the P1-P10 residues) is buried

deep within the active site, close to the zinc ion. The remainder

of the inhibitor backbone chain orients toward the solvent-

exposed surface of the protease (Figure 3A).

Binding Determinants in the BoNT/A LC:I1 Complex
Our structure reveals that I1 induces conformational changes in

the active site of BoNT/A LC upon binding, as detailed below.

Strikingly, when the apoenzyme and I1-bound BoNT/A LC struc-

Figure 1. Two-Dimensional Structure and

Electron Density for I1

(A) One-letter code sequence for the 22 C-terminal

residues of the human SNAP-25 consisting of

206 residues. The 7-residue peptide sequence

(Q197-L203) of SNAP-25 used to design I1 and

its variants is shown in bold, and their correspond-

ing positions in the inhibitor indicated as P1-P60.

The amino terminus is indicated.

(B) Schematic representation of the I1 inhibitor.

Residues Q197, A199, and K201 in the Q197-

L203 peptide have been replaced by DNP-DAB,

Trp, and DAB, respectively. DNP-DAB: 4-(2,4-dini-

trophenylamino)-2-amino-butanoic acid; DAB:

2,4-diaminobutanoic acid. In both panels, the scis-

sile peptide bond is indicated by a thick, red line.

(C) View of a sA-weighted Fo-Fc electron-density

map contoured at 1.8s (gray mesh) around I1 over-

laid with the refined model of the complex (I1 in

gray sticks and BoNT/A LC in tan ribbon represen-

tation). This map was computed with phases cal-

culated prior to the inclusion of the I1 inhibitor

(i.e., it is a model-bias free map).

tures are superimposed, steric clashes

are readily observed between the Trp,

Thr, and Leu residues of the inhibitor

(positions P20, P30, and P60, respectively)

and their complementary apoenzyme

residues (Figure 4).

The observed induced fit rationalizes

the relatively high affinity of I1 (Ki = 41 nM;

Table 2), especially when interpreted in

context with inhibition data from inhibitor

variants. To exemplify, the polar nitro and

butanoic acid groups on the inhibitor’s

aromatic P1 residue stabilizes a network

of hydrogen bonds with solvent and the backbone amide group

of the BoNT/A LC residue S259 (Figure 3B). The presence of

these stabilizing hydrogen bonds is consistent with the observa-

tion that a Phe, Gln, or Gly in this position (Table 2; peptides I6, I2,

and I7, respectively) results in decreased inhibition (Ki values of

8.3, 6.5, and 3.3 mM, respectively). Specifically, these peptides

lack the isosteric polarity of the 4-(2,4-dinitrophenylamino)-2-di-

amino-butanoic acid (DNP-DAB) group (Table 2; peptides I8 and

I1 with Ki values of 0.98 and 0.041 mM, respectively) and, hence,

the ability to make critical polar/ionic interactions with solvent

and BoNT/A LC residue S259.

The P10 residue of I1 establishes a critical anchoring neighbor-

ing point in the BoNT/A LC binding cleft. The side chain of P10 Arg

is projected into a deep pocket of the cleft (Figure 3C), where it

engages in a salt bridge with the side chain of D370. For this in-

teraction to be possible, the 370 loop of BoNT/A LC undergoes

a major conformational rearrangement such that the side chain

of D370, which is solvent exposed in the apo form, reorients

into the active site. This reorientation is stabilized by a hydrogen

bond between the side chain hydroxyl group of the I1 P30 Thr res-

idue and the carboxylate group of BoNT/A LC D370, while the

guanidinium group of I1 P10 Arg is also in close proximity to the

aromatic ring of BoNT/A LC F194, suggesting that cation-p
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interactions may further stabilize this orientation. Interestingly,

a similar binding mode has been reported for an arginine hydrox-

amate (Arg-HX) inhibitor in complex with BoNT/A LC (Silvaggi

et al., 2007).

A second, extensive anchoring contact that enhances the

binding of I1 to the active site is the P20 Trp, which docks to an

induced hydrophobic pocket composed of side chains V245,

L256, V258, Y366, L367, and F369, with the latter oriented

such that aromatic ring p-stacking is facilitated (Figure 3D). In

addition, the Trp indole ring nitrogen forms a hydrogen bond

with the backbone carbonyl of E257. In this pocket, the side

chain of F369 is repositioned relative to the apo form of BoNT/

A LC, which is accompanied by a conformational change of

the 370 loop. In addition, residue L367 is displaced to accommo-

date the I1 Trp side chain. Taken together, this induced fit to I1’s

steric and chemical complementarity may signify the existence

of a structural ‘‘Achilles tendon’’ in the BoNT/A LC protease, sug-

Table 1. X-Ray Data Collection and Refinement

Crystallographic Data

BoNT/A LC BoNT/A LC:I1

Space group P21212 P21212

a, b, c (Å) 56.8, 191.1, 42.1 58.8, 189.2, 42.3

Resolution (Å) 45�1.9

(1.98�1.90)

36�1.9

(1.98�1.90)

Unique reflections 46184 42358

Redundancy 4.2 (3.6) 5.9 (5.8)

Completeness (%) 95.9 (95.1) 76.1 (88.1)

I/s 17.1 (1.3) 14.9 (2.8)

Rsym
a (%) 9.5% (95.8%) 10.1% (53%)

Refinement

BoNT/A LC BoNT/A LC:I1

Resolution (Å) 45�1.9 36�1.9

Rcryst/Rfree
b,c 18.0% / 24.3% 21.2% / 24.7%

No. atoms

BoNT/A LC 3196 3225

I1 Na 75

Ni 1 1

Zn 1 1

Water 250 232

Average thermal (B) factor

BoNT/A LC 29.2 Å2 26.7 Å2

I1 Na 27.9 Å2

Ni 20.3 Å2 23.9 Å2

Zn 18.4 Å2 18.2 Å2

Water 37.7 Å2 32.3 Å2

Rmsds

Average bond length deviation 0.004 Å 0.007 Å

Average bond angle deviation 0.84� 1.0�

Values in parentheses are for the high-resolution bin.
a Rsym =

P
h

P
iIi(h) � < I(h) > /

P
h

P
iIi(h), where Ii(h) is the ith measurement

and < I(h) > is the mean of all measurements of I(h) for Miller indices h.
b Rcryst =

P
jFobs � kFcalcj/

P
Fobs

c Free R value is the R value obtained for a test set of reflection (5% of

total) not used during refinement.
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gesting a diversity of strategies for structure-based inhibitor

development by making use of new induced pockets in the

active site.

The binding mode for P20 Trp provides a qualitative explana-

tion for the weaker inhibitory potencies of related pseudopeptide

derivatives. In particular, when the wild-type SNAP-25 Ala is

present in the P20 position (Table 2; peptide I8), the Ki is increased

by a factor of 25 relative to I1. This can be attributed to reduced

favorable hydrophobic interactions with the smaller methyl

group. Similarly, with I11, a Phe residue in this position is also

not as favorable as Trp, indicated by only an 8-fold increase in

Ki, compared with I1. It might be argued that a fraction of these

reductions can be attributed to the Lys substitution in position

P40, but this substitution has only a minor effect on inhibitory ac-

tivity (Ki increase of�2.5 fold relative to I1). We estimated the ef-

fect of the Lys substitution by comparing peptides I9 and I10 and

from the observation that a BZA substitution in position P20 has

no statistically significant effect on Ki (compare I1 and I10).

The P20 Trp also induces a pocket for the adjacent P30 Thr of I1.

Specifically, the P30 Thr side chain points into the substrate-bind-

ing cleft, where its hydroxyl moiety engages in a hydrogen bond

with the D370 side chain carboxylate (Figure 3C), and its methyl

group makes hydrophobic contacts with the V70 side chain.

Of further importance for the affinity of I1 are the P40 2,4-diami-

nobutanoic acid (DAB) contacts with BoNT/A LC, and intrapep-

tide contacts with the methylenes of P1 DNP-DAB (Figure 3E).

The free terminal 4-amino substituent engages in a hydrogen

bond with the side chain carboxyl oxygen of Q162. This interac-

tion provides structure-based explanations for the inhibition data

of similar analogs (Table 2). In one example, increasing the length

of the DAB side chain by a longer ornithine side chain is sterically

unfavorable, resulting in a 2-fold decrease in inhibition (Table 2;

peptide I12). Likewise, the structure suggests why decreasing

the DAB side chain length decreases inhibition. This is exempli-

fied in the 2,3-diaminopropanoic acid (DAP) derivative that

possesses a Ki that is one order of magnitude larger than that

of I1 (see Table 2; derivative I13). This decreased inhibition can

be explained by the lost hydrogen bond with Q162 (Figure 3E).

Unlike most other residue positions in I1, the P50 Met only en-

gages in intrapeptide binding contacts (Figure 3A). Specifically,

this residue stabilizes the intramolecular hydrophobic collapse

of the aromatic ring of the P1 DNP-DAB. The Leu in position

P60 induces a conformational change in the 60 loop (Figure 4).

In particular, the side chain of residue R66 is slightly displaced

relative to its position in the apoenzyme, relieving steric clashes

with the terminal carboxyl group and electrostatic repulsions

with the synthetically added C-terminal amide of this residue.

Inhibition Mechanism
The mechanism for peptide cleavage employed by the BoNT/A

LC is believed to be similar to that of thermolysin, as supported

by several structural and mutagenesis studies (Li et al., 2000;

Binz et al., 2002; Agarwal et al., 2004; Swaminathan et al.,

2004) (Figures 5A–C). In this model, the geometry of the zinc

ion coordination in the active site changes upon SNAP-25 bind-

ing, such that the catalytic water is displaced by the carbonyl ox-

ygen in the P1 position (i.e., Q197) of the substrate and placed in

proximity to the carboxylate group of the putative ‘‘proton shut-

tle,’’ E224 (Figure 5A). As a result, the catalytic water makes two
All rights reserved
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H-bonds with E224 in a bidentate manner. From this position, the

oxygen atom in the catalytic water remains weakly coordinated

to the zinc, resulting in the penta-coordination of the metal ion.

Hence, E224 acts as a general base to generate a hydroxide

ion that is oriented for nucleophilic attack on the carbonyl carbon

of the scissile peptide bond (Figure 5B). This tetrahedral interme-

diate state is stabilized by putative interactions provided by the

zinc ion and the hydroxyl group of Y366. Finally, the collapse

of this tetrahedral intermediate and the E224-mediated transfer

of two protons onto the scissile amide generate a stable amino

group that then leaves the active site (Figure 5C). In this model,

the catalytic water, together with the proton shuttle E224, are

of critical importance for catalytic hydrolysis of the peptide

bond in the SNAP-25 substrate.

Consistent with this model, the structure of the BoNT/A LC:I1

complex shows that the carbonyl oxygen of P1 DNP-DAB is

indeed acting as the fourth zinc-coordinating group in the com-

plex, instead of the catalytic water molecule (Lacy et al., 1998),

a feature that has been previously reported for small molecule

hydroxamate inhibitors in complex with the BoNT/A LC

Figure 2. Superposition of BoNT/A Crystal

Structures

(A) Comparison of the backbone trace of reported

crystal structures of BoNT/A LC. The apo form of

wild-type BoNT/A obtained in the presence of

NiCl2 is colored magenta; wild-type BoNT/A LC

in complex with I1 is colored tan; the apo form of

the wild-type BoNT/A LC obtained in the absence

of NiCl2 is colored red (Burnett et al., 2007) (PDB

ID: 2ISE); the SNAP-25-bound form of the

E224Q/Y366F BoNT/A LC is colored gray (Brei-

denbach and Brunger, 2004) (PDB ID: 1XTG); the

ArgHX-bound form of the wild-type BoNT/A LC

is colored green (Silvaggi et al., 2007) (PDB ID:

2IMB). Flexible loops are labeled.

(B–E) Enlargements of the superposition of the 60,

200, 250, and 350 loops, respectively.

(F) Superposition of the zinc-coordinating residues

(sticks) as well as R363 and Y366 in all five struc-

tures indicated above.

(Fu et al., 2006; Silvaggi et al., 2007) (Fig-

ure 5D; Figure 6). In addition, the complex

structure also confirms the proposed hy-

drogen bonding between the hydroxyl

group of the Y366 side chain in the

BoNT/A LC, and the P1 carbonyl oxygen

(Figures 3B and 5D). Nonetheless, the

P1 N-terminal amino group forms a hydro-

gen bond with the carboxylate group of

E224, the putative proton shuttle residue

in the BoNT/A LC (Li et al., 2000), effec-

tively abrogating any interaction between

E224 and a potential catalytic water mol-

ecule (Figures 3B, 5D, and 6). Thus, E224

is clearly not positioned for a potential nu-

cleophilic attack on the scissile carbonyl.

In addition to this proton shuttle ‘‘block-

ing’’ effect, the putative scissile amide in

position P10 in the inhibitor is distant from the E224 carboxylate

group, further hampering any hydrolytic event with the scissile

bond. Consistent with this inhibitory role for the N-terminal amino

group in I1, similar pseudopeptide derivatives, in which the

amino group in question has been eliminated, acetylated or con-

figurationally reoriented so that it cannot engage in this hydrogen

bond (Table 2; peptides I3, I4, and I5, respectively), show less

inhibition than the corresponding derivatives with a free amino

group (e.g., peptides I2 and I1).

The interactions observed for residues P10-P30 stabilize the

orientation of the backbone of residue P1 for inhibition at the ac-

tive site. Presumably, the binding mode of this P10-P30 peptide

segment would orient the backbone of any residue bearing

a free amino group (as explained above) in the P1 position

so as to achieve the inhibitory mode observed for DNP-DAB

in I1—that is, by occupying the position of the catalytic water.

In silico mutation of the DNP-DAB residue in the complex struc-

ture suggests that the backbone of a Gln residue in this position

would also be placed in the same inhibitory mode described for

DNP-DAB (not shown). In agreement with our model, a 7-residue

Structure 16, 1588–1597, October 8, 2008 ª2008 Elsevier Ltd All rights reserved 1591
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peptide containing the wild-type sequence of the SNAP-25

substrate (and, therefore, the Gln-Arg scissile peptide bond),

showed inhibitory activity with no detectable hydrolysis (see

Table 2; peptide I2), reinforcing the notion that the residue at

the P1 position of all inhibitors in Table 2 deactivates BoNT/A

LC by displacing the nucleophilic water and simultaneously

‘‘locking’’ the E224 proton shuttle.

To assess whether the inhibitory mechanism of I1 is specific for

BoNT/A LC, we examined it against four other BoNT serotypes,

as well as against thermolysin. When BoNT serotypes B, D, E,

and F or thermolysin were incubated with hydrolyzable con-

structs of their respective substrates, the presence of I1 did not

have any inhibitory effects on the cleavage of these substrates

(Table 3). Thus, I1 is a highly specific inhibitor for the BoNT/A LC.

The I1 and SNAP-25 Binding Modes Differ
Normally, one might assume that the conformation of peptidomi-

metics derived from the sequence of the native SNAP-25

substrate around the scissile bond should resemble that of

Figure 3. Interactions of I1 with BoNT/A LC

(A) Complex of I1 (sticks) with BoNT/A LC (gold

surface). The N and C termini of I1, as well as the

60, 250, and 370 loops are labeled.

(B) Interactions of I1 residue P1 with BoNT/A LC

(tan), water molecules (red spheres), and the zinc

ion.

(C) Interactions of the P10 (Arg) and P30 (Thr) resi-

dues of I1 with BoNT/LC (tan). Superimposed is

residue D370 of the apo form of the BoNT/A LC

(magenta).

(D) Interactions of I1 residue P20 (Trp) with BoNT/A

LC (tan). Superimposed is residue F369 of the apo

form of BoNT/A LC (magenta).

(E) Interactions of I1 residue P40 (DAB) with BoNT/

A LC and with residue P1 (DNP-DAB) of I1. Van der

Waals interactions between DNP-DAB and DAB

side chain methylene groups are displayed as

gray dots. The N and C termini of the I1 inhibitor

are indicated by N and C, respectively.

In all panels, selected hydrogen bonds between

the protease and inhibitor residues are indicated

by gray dashes. C, N, and O atoms of I1 are

color-coded in the stick representations (gray,

blue, and red, respectively). Where shown, the

zinc ion is displayed as a blue sphere.

SNAP-25 in the substrate:enzyme com-

plex. However, and of interest from a gen-

eral structural point of view, comparison

of both BoNT/A LC complexes (i.e.,

wild-type BoNT/A LC: I1 and BoNT/A

LC[E224Q,Y366F]:SNAP-25) shows that

the closely SNAP-25-related I1 assumes

a compact, a-helical conformation that

maximizes its packing interactions with

the active site, while the corresponding

segment in SNAP-25 (i.e., QRATKML)

adopts an extended, b stranded confor-

mation (Figure 7). This striking observa-

tion suggests that the intrinsic plasticity

of active sites in proteases, which can be a limiting factor in

the development of specific inhibitors, can actually be overcome

by designing peptidomimetics whose structural conformation

differs significantly from the cognate substrate. Thus, although

the backbones of both, I1 and SNAP-25, have the same direc-

tionality (i.e., N to C terminus) relative to the active site of the

enzyme, I1, by virtue of its novel backbone orientation, is able

to induce pockets in the active site (described above) that are

not induced by SNAP-25. As an additional result of this unex-

pected new conformation of I1, the P50 Met is clearly unable to

establish the b-exosite contacts with BoNT/A LC residues

Y250 and F369 observed for the corresponding SNAP-25

M202 residue in the BoNT/A LC[E224Q,Y366F]:SNAP-25 com-

plex (Breidenbach and Brunger, 2004) (Figure 7B). Furthermore,

the backbone and side chains of BoNT/A LC residues Q67 and

V68 are displaced by the presence of the C-terminal Leu residue

in the I1 peptide, relative to the SNAP-25-bound form of BoNT/A

LC [E224Q,Y366F] (Figure 7B). Thus, these two residues are po-

sitioned toward a more solvent-exposed region in the I1-bound

1592 Structure 16, 1588–1597, October 8, 2008 ª2008 Elsevier Ltd All rights reserved
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form, whereas in the SNAP-25-bound form of the protease they

point to the entrance of the binding site, in which case they would

clash with the Leu residue in I1. Overall, these findings reveal

a very different binding mode for SNAP-25 substrate and I1 in-

hibitor. Furthermore, SAR (Schmidt and Bostian, 1997; Schmidt

et al., 1998) are also at odds with the assumption of a similar

binding mode (Table 2). For example, as discussed above, sub-

stitution of Ala (SNAP-25 sequence) with Trp in the P20 position of

the inhibitor significantly increases its Ki.

Figure 4. Induced-Fit Binding of I1 to the BoNT/A Active Site

View of the binding cleft of the BoNT/A LC (tan surface) in complex with inhib-

itor I1 (gray sticks). Inhibitor residues are indicated by their three-letter amino

acid code, with the exception of residues P1 and P40 (DNP-DAB and DAB,

respectively). The induced binding pocket is evidenced by the steric clashes

between the apo BoNT/A LC surface (magenta) with inhibitor residues Trp,

Thr, and Leu upon superposition (translucent overlaps indicated by the black

ovals).
The P10 Arg of I1 probably binds to the native S10 site on BoNT/

A LC since the coordination of the scissile carbonyl oxygen in our

structure is consistent with the catalysis mechanism (Figures

5A–C). Furthermore, the Arg side chain contacts with D370

and F194 observed in our structure have also been reported

for the BoNT/A LC:ArgHX complex(Silvaggi et al., 2007). There-

fore, these two observations, together with mutagenesis data

that demonstrate the requirement of the BoNT/A LC for an Arg

residue in the P10 position (Schmidt et al., 1998), support the no-

tion that the binding site for the P10 I1 residue corresponds to the

S10 site in BoNT/A LC. The SNAP-25 contacts at the BoNT/A LC

exosites favor the extended conformation of the substrate chain

in the vicinity of the active site (i.e., the SNAP-25 scissile bond),

which otherwise would collapse into a compact, nonhydrolyz-

able structure. The extended conformation of BoNT/A LC bound

SNAP-25 ensures that the backbone amide group in the P10 po-

sition, and not the P1 amide group (as observed for the I1 inhib-

itor), is in a competent orientation for attack by the catalytic water

in the protease, resulting in the cleavage of the peptide bond.

A cocrystal structure of BoNT/A LC with a weakly inhibiting

(Ki = 1.9 mM) heptapeptide, N-Ac-CRATKML, has been recently

reported (Silvaggi et al., 2008). In this complex, the Cys Sg atom

directly coordinates the Zn2+ in the protease active site. Although

the backbone secondary structure and directionality of this pep-

tide is somewhat similar to that of I1, the direct coordination to

the Zn2+ results in very different peptide:protein interactions.

For the N-Ac-CRATKML peptide, the N-terminal acetyl group

partially occupies the S10 site in the enzyme, resulting in an al-

tered placement of the P10 Arg residue, which no longer makes

the salt bridge contact with D370, observed for I1. In addition,

the P20 Ala residue in the N-Ac-CRATKML peptide lacks many

of the interactions of the corresponding Trp sidechain in I1,

explaining in part the superior potency of I1 versus N-Ac-

CRATKML. For example, the small methyl side chain of the Ala

residue of N-Ac-CRATKML can only form limited hydrophobic
Table 2. Inhibitor and Inhibition (Ki) Data

Inhibitor Inhibitor Sequencea,b,c Ki (mM) Std. Dev.

P1 P10 P20 P30 P40 P50 P60

I2 Q R A T K M L 6.5 0.19

I3 3-Phenylpropanoyl- R A T K M L >200

I4 N-Acetyl-F R A T K M L >200

I5 [D]F R A T K M L >200

I6 F R A T K M L 8.3 0.79

I7 G R A T K M L 3.3 0.12

I8 DNP-DAB R A T K M L 0.98 0.12

I9 DNP-DAB R BZA T K M L 0.094 0.015

I10 DNP-DAB R BZA T DAB M L 0.05 0.0073

I11 DNP-DAB R F T K M L 0.32 0.021

I12 DNP-DAB R W T ORN M L 0.1 0.023

I13 DNP-DAB R W T DAP M L 0.39 0.01

I1 DNP-DAB R W T DAB M L 0.041 0.0084
a All peptides have a free amino group at the N terminus, unless noted otherwise, and the C terminus is amidated.
b Nonstandard abbreviations: DNP-DAB, 4-(2,4-dinitrophenylamino)-2-amino-butanoic acid; ORN, ornithine; DAB, 2,4-diaminobutanoic acid; DAP,

2,3-diaminopropanoic acid; BZA, benzothien-3-yl-alanine.
c All amino acids are the [L] stereoisomer unless noted otherwise.
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Figure 5. Mechanism of Inhibition by I1

(A–C) Schematic representation of a model for BoNT/A LC-catalyzed hydrolysis of SNAP-25. Atoms, bonds, and residue labels of the BoNT/A LC, SNAP-25

substrate, and the water molecules are shown in black, green, and red, respectively. Details are provided in the main text.

(D) Schematic representation of the interactions of the I1 inhibitor with residues in the active site of the BoNT/A LC. Atoms, bonds, and residue labels of the I1

inhibitor are shown in blue.
contacts with the side chain of V258. By contrast, the analogous

Trp side chain of I1 forms highly favorable p-stacking between

its phenyl portion of the indole and the side chain of Phe369.

This interaction occurs in combination with favorable hydropho-

bic contacts formed with side chain of Leu256 for this same sub-

stituent. Anti to this interaction, the phenyl portion of the I1 Trp

indole also forms favorable hydrophobic contacts with the side

Figure 6. Inhibitory Interactions of I1

Coordination of the zinc ion in the presence of bound I1 (gray sticks). The pu-

tative scissile carbonyl oxygen (sC), scissile amide nitrogen (sN), and the ter-

minal NH3 group of I1 are labeled. BoNT/A LC residues are shown as tan

sticks. The side chains of Arg and DNP-DAB in I1 are also labeled. Interactions

are represented as dashes. N, C, and O atoms are color-coded in blue,

tan/gray, and red, respectively. The zinc ion is represented by a light blue

sphere.
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chain of L367. These contacts are further stabilized by favorable

acid-base interactions between the side chain NH of Trp and the

backbone carbonyl of E257, and hydrophobic complementarity

between I1 Trp Cb, Cg, and Cd1 atoms with aromatic atoms of

Y366. As highlighted by the marked differences between the

conformations of this region for the N-Ac-CRATKML:BoNT/A

LC and I1:BoNT/A LC structures, these key interactions induced

by I1 Trp provide novel, specific details to exploit in future struc-

ture-based discovery and design investigations.

Implications for BoNT/A LC Inhibitor Development
Our cocrystal provides a new paradigm for peptidomimetic in-

hibitor binding in the BoNT/A LC substrate cleft and rationalizes

the SAR of related derivatives. This can serve as the platform for

designing more-potent analogs with therapeutic viability. For

example, the helical nature of the I1 conformation implies that

peptidic cyclization in an isosteric manner would simultaneously

provide affinity and a feasible bioavailability component for

a peptide structure. The hydrolyzable components such as pep-

tide bonds could be systematically replaced with nonhydrolyz-

able isosteres.

Table 3. Specificity of I1 Inhibition

Protease Substrate

Substrate

Concentration

(mM) % Inhibition

BoNT/A SNAP-25, residues 187–203 400 >90

BoNT/B VAMP residues 1–94 20 0

BoNT/D VAMP residues 1–94 20 0

BoNT/E SNAP-25, residues 1–206 20 0

BoNT/F VAMP residues 1–94 20 0

Thermolysin Synthetic peptidea 500 0

The inhibitor concentration was 4 mM.
a The sequence of the synthetic peptide was KLSELDDRADALQAGAS.
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Figure 7. Comparison of the I1 Conforma-

tion with that of SNAP-25

(A) Cartoon representation of the backbone of

BoNT/A LC-bound inhibitor I1 (left) and the Q197-

L203 fragment in BoNT/A LC-bound SNAP-25

(right). The backbones of the corresponding

BoNT/A LC structures were superimposed to pro-

duce the shown orientations of I1 and the SNAP-25

fragment. For clarity, the corresponding BoNT/A

LC structures are not shown. The identity of the

residues in both molecules is indicated by their

one-letter code, with the exception of residues

DAB and DNP-DAB in I1. Side chains of all residues

are shown as sticks. N, C, O, and S atoms are

colored in blue, cyan, red, and yellow, respectively.

The Zn2+ is displayed as a gray sphere. Both

backbones display the same N-to-C terminus di-

rectionality indicated by the solid vertical arrow.

The dashed vertical line indicates the presence of

additional SNAP-25 residues on both ends of the

Q197-L203 fragment, which have been omitted

for clarity.

(B) Cartoon representation of the superposition

of the BoNT/A LC complexes with I1 and SNAP-

25 (tan and green cartoons, respectively). The

cartoon representation of I1 and the QRATKML

sequence in SNAP-25 are shown in gray and

red, respectively, with their N and C termini ap-

propriately indicated. Selected residues of the

BoNT/A LC forming part of the reported b-exosite

are shown as green sticks. Residues in the

60 loop of BoNT/A LC undergoing I1-induced

conformational changes are shown as tan sticks.

The side chains of the Met residues in I1 and

SNAP-25 are shown as sticks, with the sulfur

atom colored yellow. The Zn2+ is shown as a light

blue sphere.
The cocrystal structure suggests modifications of I1 to further

enhance its potency. For example, removal or replacement of

the P60 Leu with an amphipathic bioisoteric moiety such as

a morpholino group would be expected to reduce the entropic

penalty associated with this hydrophobic residue so close to

the solvent-exposed area. Further inspection of the I1 binding

site reveals additional potential binding pockets that might be

available for other chemical substituents to be included in future

inhibitors. In particular, unexploited hydrophobic patches such

as the one formed by the I161 and F194 side chains or that

defined by the side chains of residues F196, T215, and V219,

provide areas where new hydrophobic functional groups could

be incorporated to increase inhibitor:enzyme hydrophobic bind-

ing. Superposition of these two patches in the apo and bound

forms of the enzyme suggest a high degree of rigidity for these

hydrophobic patch forming residues (RMSD < 0.15 Å). Finally,

the hydrophobic pocket formed around the P20 Trp is an impor-

tant new site for exploiting additional contacts that could further

stabilize binding in this induced pocket.

In addition to strategies for the design of improved peptide-

based BoNT inhibitors, the a-helical conformation of bound I1
Structure 16, 1588
and its chemical contacts can be used as a template for design

of small molecule nonpeptidic inhibitors. This approach would

involve using the relative geometries and distances of the key

substituents of the inhibitor to generate three-dimensional search

queries for database mining.

In summary, the BoNT/A LC:I1 complex reveals a binding con-

formation for BoNT inhibitors in the catalytic cleft of the BoNTA/

LC that is very different from that of SNAP-25 substrate. A key

feature of this new binding mode is the induction of new binding

pockets in the active site of BoNT/A LC. Our structure reveals

that the basis for inhibition of BoNT/A LC catalytic activity by I1

involves the displacement of the catalytic water molecule and in-

teractions with the side chain of E224 in the enzyme active site.

The BoNT/A LC residues observed to interact with the P10 Arg in

I1 likely correspond to the native S10 site of the enzyme. The

structure of the BoNT/A LC:I1 complex and the observation of

new induced binding pockets is a starting point for the rational

design of more potent peptidomimetic inhibitors that are active

in the sub nM range, and provides a new framework for the de-

velopment of nonpeptidic, non-zinc-coordinating, small mole-

cule inhibitors. Finally, the high specificity displayed by I1 against
–1597, October 8, 2008 ª2008 Elsevier Ltd All rights reserved 1595
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BoNT/A (Table 3) indicates that compounds designed to mimic

the interactions described for this inhibitor are likely to display

the same specificity, and therefore, little or no side effects on

related protease systems, a feature highly desirable in the devel-

opment of therapeutic drugs.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

Details of the bacterial expression and purification of the active form of wild-

type BoNT/A LC used in this study have been previously described (Breiden-

bach and Brunger, 2004). Solutions of wild-type BoNTA-LC containing 20 mM

HEPES (pH 7.4) were adjusted to a final 50 mM protein concentration.

Crystallization and Data Collection

Crystals were obtained by using the hanging drop vapor diffusion method at

20�C. Briefly, 3 ml of a 50 mM protein stock were mixed with 1 ml of the mother

liquor containing 0.1X PEG MME 2000, 5 mM NiCl2, and 100 mM HEPES

(pH 7.8). A layer of a 1:1 mixture of parafin:silicon oil was poured onto the

mother liquor present in the well. Crystals appeared after approximately

five days of incubation. In order to achieve the binding of the I1 inhibitor to

BoNT/A LC in a complex, the crystals generated above were soaked in 3 ml

drops of a 1 mM I1 water solution for 5 min at RT. Then, they were further trans-

ferred into a 3 ml drop of a 3 mM I1 solution. Five minutes after this second

soak, the crystals were directly transferred into a cryo-solution containing

25% (v/v) glycerol, 0.1 X PEGMME 2000, 5 mM NiCl2, and 100 mM HEPES

(pH 7.8), and then were frozen in liquid nitrogen. The diffraction data were col-

lected at beamline 9.1 of the SSRL (Stanford Synchrotron Radiation Labora-

tory) at a wavelength of 1 Å and at a temperature of 100�K. The soaked crystals

belonged to the P21212 space group. Integration, indexing, and scaling of the

diffraction data was performed using the HKL2000 suite of programs (Otwi-

nowski and Minor, 1997).

Structure Determination and Refinement of the Wild-Type

BoNT/A LC

The coordinates in the 2ISG pdb file were used as the template for solving the

structure of the apo form of wild-type BoNT/A LC using the PHASER module in

CCP4i (McCoy et al., 2005). The calculated phases from the molecular re-

placement step allowed for the generation of a sA-weighted mFo-DFc electron

density that unambiguously indicated the presence of the Zn and the Ni ions.

Cross-validation was performed by excluding 5% of the diffraction data

throughout the entire refinement process. After a few refinement cycles using

Phenix (Adams et al., 2002), water molecules were added, and further refine-

ment calculations were performed, alternated with manual modeling in Coot

(Emsley and Cowtan, 2004). The quality of the final structure was assessed

by using MolProbity (Davis et al., 2007). Ramachandran analysis showed

that the apo BoNT/A LC had 96.4% residues in the favored region with only

0.26% outliers.

The Ni ion present in this crystal form of BoNT/A LC is coordinated by the

side chain amino group of K272 and the NE2 atom from H269 from one

BoNT/A LC molecule, and by the ND2 atom in the side chain amide group of

N410 from a BoNT/A LC molecule in the neighboring asymmetric unit, as

well as by three water molecules. Compared to other reported crystal struc-

tures of the BoNT/A LC that were obtained in the absence of Ni, this ion causes

the side chains of K272 and H269 to reorient into closer proximity. Neverthe-

less, the backbone atoms of the H269-K272 segment remain, overall, in the

same orientation in all BoNT/A LC structures. More importantly, these resi-

dues, and those in the vicinity, are distant from the active site and do not par-

ticipate in a direct interactions with the I1 inhibitor or its interacting residues.

Structure Determination and Refinement of the Wild-Type BoNT/A

LC-I1 Complex

The coordinates in the 1XTF pdb file were used as the search model to deter-

mine the structure of the wild-type BoNT/A LC-I1 complex by molecular

replacement. The sA-weighted mFo-DFc electron density map clearly indi-

cated the presence of I1 in the vicinity of the active site (Figure 1C). The coor-

dinates of the I1 inhibitor were then added to those of the BoNT/A LC in the
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structure of the complex using Coot. Final refinement and modeling was per-

formed as with the apo form of the BoNT/A LC. The quality of the final structure

was assessed by using MolProbity. Ramachandran analysis showed that

the BoNT/A LC:I1 structure had 97.7% residues in the favored region with

no outliers.

Inhibitor Synthesis

Peptides and peptidomimetics were synthesized with a model 431A Peptide

Synthesizer from Applied Biosystems (Foster City, CA). Reagents and amino

acid intermediates were obtained from Applied Biosystems (Foster City,

CA), Bachem (King of Prussia, PA), and from EMD Biochemicals (La Jolla,

CA). All peptides were C-terminal amides. Inhibitors were purified by re-

verse-phase HPLC with gradients of dilute trifluoroacetic acid and acetonitrile

using equipment from Waters Associates (Milford, MA). Molecular weights of

the inhibitors were confirmed by mass spectrometry.

Determination of Ki Values

The protease activity of the BoNT/A LC in the presence of various concentra-

tions of inhibitors was determined as described previously for the holotoxin

(Schmidt and Bostian, 1997; Schmidt et al., 1998) with minor modifications.

To determine initial hydrolysis rates, assays were incubated at 37�C for various

times, depending on substrate and inhibitor concentrations, such that less

than 10% of the substrate was hydrolyzed. Ki values of inhibitors were then

calculated from fractional inhibition determinations using the equation:

Ki = [I] � (F)[I] / (F)(1 + ([S] / Km)), where [I] and [S] are the concentrations of

inhibitor and substrate, respectively, and F is fractional inhibition (Segel, 1975).

Values are averages of at least three independent determinations, each in trip-

licate. As an inherent property of the inhibitor, Ki is independent of the sub-

strate used to determine it: Ki = [E][I] / [EI]. Nevertheless, the Ki for I1 in kinetic

assays with full-length SNAP-25 substrate was also determined and found to

be the same as for the method used by Schmidt et al. (1998). Measured Ki

values against BoNT/A LC and holotoxin BoNT/A are very similar for peptide

analogs similar to I1, so all inhibition assays were performed only against

BoNT/A LC.

Specificity of I1 Inhibition

The protease activity of various BoNT serotypes and thermolysin in the pres-

ence of I1 inhibitor was determined as described previously (Schmidt and

Bostian, 1997). BoNT/B LC was obtained from Leonard Smith (United States

Army Medical Research Institute of Infectious Diseases, Frederick, MD).

BoNT/F LC was provided by S. Swaminathan (Brookhaven National Labora-

tory, Upton, NY). BoNT/E LC was purchased from BB Tech (Dartmouth,

MA), and thermolysin was purchased from Sigma-Aldrich (St. Louis, MO).

The gene for BoNT/D LC chain was provided by Raymond Stevens (Scripps

Research Institute, La Jolla, CA). It was expressed and purified in the labora-

tory of J.J.S. (unpublished procedure). Recombinant VAMP (residues 1–94)

and full-length SNAP25 were cloned, expressed, and purified in the laboratory

of JJS (unpublished procedures). The peptide substrate for thermolysin was

produced with a model 431A peptide synthesizer from Applied Biosystems

(Foster City, CA), using chemicals and protocols obtained from the same man-

ufacturer. The peptide was purified by reverse-phase HPLC using a gradient of

acetonitrile in 0.1% trifluoroacetic acid (TFA).

The figures were prepared using PyMol (http://www.pymol.org).
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