31 research outputs found
assessment of blood capillaries and structural proteins localization
The papillary dermis of human skin is responsible for its biomechanical
properties and for supply of epidermis with chemicals. Dermis is mainly
composed of structural protein molecules, including collagen and elastin, and
contains blood capillaries. Connective tissue diseases, as well as
cardiovascular complications have manifestations on the molecular level in the
papillary dermis (e.g. alteration of collagen I and III content) and in the
capillary structure. In this paper we assessed the molecular structure of
internal and external regions of skin capillaries using two-photon
fluorescence lifetime imaging (FLIM) of endogenous compounds. It was shown
that the capillaries are characterized by a fast fluorescence decay, which is
originated from red blood cells and blood plasma. Using the second harmonic
generation signal, FLIM segmentation was performed, which provided for spatial
localization and fluorescence decay parameters distribution of collagen I and
elastin in the dermal papillae. It was demonstrated that the lifetime
distribution was different for the inner area of dermal papillae around the
capillary loop that was suggested to be due to collagen III. Hence, we propose
a generalized approach to two-photon imaging of the papillary dermis
components, which extends the capabilities of this technique in skin
diagnosis
In vivo non-invasive staining-free visualization of dermal mast cells in healthy, allergy and mastocytosis humans using two-photon fluorescence lifetime imaging
Mast cells (MCs) are multifunctional cells of the immune system and are found in skin and all major tissues of the body. They contribute to the pathology of several diseases including urticaria, psoriasis, atopic dermatitis and mastocytosis where they are increased at lesional sites. Histomorphometric analysis of skin biopsies serves as a routine method for the assessment of MC numbers and their activation status, which comes with major limitations. As of now, non-invasive techniques to study MCs in vivo are not available. Here, we describe a label-free imaging technique to visualize MCs and their activation status in the human papillary dermis in vivo. This technique uses two-photon excited fluorescence lifetime imaging (TPE-FLIM) signatures, which are different for MCs and other dermal components. TPE-FLIM allows for the visualization and quantification of dermal MCs in healthy subjects and patients with skin diseases. Moreover, TPE-FLIM can differentiate between two MC populations in the papillary dermis in vivo—resting and activated MCs with a sensitivity of 0.81 and 0.87 and a specificity of 0.85 and 0.84, respectively. Results obtained on healthy volunteers and allergy and mastocytosis patients indicate the existence of other MC subpopulations within known resting and activated MC populations. The developed method may become an important tool for non-invasive in vivo diagnostics and therapy control in dermatology and immunology, which will help to better understand pathomechanisms involving MC accumulation, activation and degranulation and to characterize the effects of therapies that target MCs
Translucency and Color Stability of a Simplified Shade Nanohybrid Composite after Ultrasonic Scaling and Air-Powder Polishing
We aimed to assess the influence of professional dental prophylaxis on the translucency
and color stability of a novel simplified shade nanohybrid composite material. Sixty composite
disks (5 mm in diameter and 2 mm thick) of light (n = 30) and dark (n = 30) shades were prepared.
The specimens were randomly divided into the following three groups (n = 10) according to the
prophylaxis procedure used: ultrasonic scaling, air-powder polishing with sodium bicarbonate, and
controls. The specimens were submitted to translucency and color analysis based on the CIELab
system. Two measurements were performed before and after 48-h storage in coffee. Translucency
values of untreated light and dark specimens were 9.15 ± 0.38 and 5.28 ± 1.10, respectively. Airpowder polishing decreased the translucency of the light composite specimens. Storage in coffee
resulted in color changes (∆E) ranging between 2.69 and 12.05 and a mean translucency decrease
ranging between −0.88 and −6.91. The samples in the light group tended to exhibit greater staining;
the treatment method had no effect on ∆E. It can be concluded that light-shade composite restorations
are more prone to translucency and color changes resulting from air-powder polishing and contact
with staining media. However, further research using other composites and powders is required
Dextran adsorption onto red blood cells revisited: single cell quantification by laser tweezers combined with microfluidics
The aggregation of red blood cells (RBC) is of importance for hemorheology, while its mechanism remains debatable. The key question is the role of the adsorption of macromolecules on RBC membranes, which may act as “bridges” between cells. It is especially important that dextran is considered to induce “bridge”-less aggregation due to the depletion forces. We revisit the dextran-RBC interaction on the single cell level using the laser tweezers combined with microfluidic technology and fluorescence microscopy. An immediate sorption of ~104 molecules of 70 kDa dextran per cell was observed. During the incubation of RBC with dextran, a gradual tenfold increase of adsorption was found, accompanied by a moderate change in the RBC deformability. The obtained data demonstrate that dextran sorption and incubation-induced changes of the membrane properties must be considered when studying RBC aggregation in vitro. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
Assessment of Fibrinogen Macromolecules Interaction with Red Blood Cells Membrane by Means of Laser Aggregometry, Flow Cytometry, and Optical Tweezers Combined with Microfluidics
An elevated concentration of fibrinogen in blood is a significant risk factor during many
pathological diseases, as it leads to an increase in red blood cells (RBC) aggregation, resulting in
hemorheological disorders. Despite the biomedical importance, the mechanisms of fibrinogen-induced
RBC aggregation are still debatable. One of the discussed models is the non-specific adsorption of
fibrinogen macromolecules onto the RBC membrane, leading to the cells bridging in aggregates.
However, recent works point to the specific character of the interaction between fibrinogen and the RBC
membrane. Fibrinogen is the major physiological ligand of glycoproteins receptors IIbIIIa (GPIIbIIIa
or αIIββ3 or CD41/CD61). Inhibitors of GPIIbIIIa are widely used in clinics for the treatment of
various cardiovascular diseases as antiplatelets agents preventing the platelets’ aggregation. However,
the effects of GPIIbIIIa inhibition on RBC aggregation are not sufficiently well studied. The objective
of the present work was the complex multimodal in vitro study of the interaction between fibrinogen
and the RBC membrane, revealing the role of GPIIbIIIa in the specificity of binding of fibrinogen by the
RBC membrane and its involvement in the cells’ aggregation process. We demonstrate that GPIIbIIIa
inhibition leads to a significant decrease in the adsorption of fibrinogen macromolecules onto the
membrane, resulting in the reduction of RBC aggregation. We show that the mechanisms underlying
these effects are governed by a decrease in the bridging components of RBC aggregation forces
Signatures of Molecular Unification and Progressive Oxidation Unfold in Dissolved Organic Matter of the Ob-Irtysh River System along Its Path to the Arctic Ocean
The Ob-Irtysh River system is the seventh-longest one in the world. Unlike the other Great Siberian rivers, it is only slightly impacted by the continuous permafrost in its low flow. Instead, it drains the Great Vasyugan mire, which is the world largest swamp, and receives huge load of the Irtysh waters which drain the populated lowlands of the East Siberian Plain. The central challenge of this paper is to understand the processes responsible for molecular transformations of natural organic matter (NOM) in the Ob-Irtysh river system along the South-North transect. For solving this task, the NOM was isolated from the water samples collected along the 3,000?km transect using solid-phase extraction. The NOM samples were further analyzed using high resolution mass spectrometry and optical spectroscopy. The obtained results have shown a distinct trend both in molecular composition and diversity of the NOM along the South-North transect: the largest diversity was observed in the Southern “swamp-wetland” stations. The samples were dominated with humic and lignin-like components, and enriched with aminosugars. After the Irtysh confluence, the molecular nature of NOM has changed drastically: it became much more oxidized and enriched with heterocyclic N-containing compounds. These molecular features are very different from the aliphatics-rich permafrost NOM. They witnesses much more conservative nature of the NOM discharged into the Arctic by the Ob-Irtysh river system. In general, drastic reduction in molecular diversity was observed in the northern stations located in the lower Ob flow
Recommended from our members
Label-free characterization of white blood cells using fluorescence lifetime imaging and flow-cytometry: molecular heterogeneity and erythrophagocytosis [Invited]
Article reporting the results of blood cell characterization using label-free fluorescence imaging techniques and flow-cytometry. Autofluorescence parameters of different cell types – white blood cells, red blood cells, erythrophagocytic cells – are assessed and analyzed in terms of molecular heterogeneity and possibilities of differentiation between different cell types in vitro and in vivo
Воздействие высокой концентрации оксида азота на оксигенаторы аппаратов искусственного кровообращения (экспериментальное исследование)
The aim of the study. To study the effect of high nitric oxide concentrations on hollow polypropylene fibers of oxygenators.Materials and methods. The study was conducted in two stages. At the first stage, we evaluated the stability of oxygenator membrane made of hollow polypropylene fibers after six hours of exposure to air-oxygen mixture containing NO at 500 parts per million, or 500 pro pro mille (ppm) concentration, using mass spectrometry and infrared spectroscopy. At the second stage, an experiment with cardiopulmonary bypass (CPB) was conducted on 10 pigs. In the study group (n=5) animals sweep gas was supplied to the oxygenator as an air-oxygen mixture with NO at 100 ppm. In the control group animals (n=5) an air-oxygen mixture was used without NO. The CPB lasted for 4 hours, followed by observation for 12 hours. NO, NO2 (at the inlet and outlet of the oxygenator), and the dynamics of methemoglobin were evaluated. After weaning of animals from CPB, the oxygenators were tested for leakproofness, and scanning electron microscopy (SEM) was performed.Results. The oxygenator made of polypropylene hollow fibers retained its gas transfer parameters after six hours of exposure to air-oxygen mixture containing NO at 500 ppm. Based on IR-Fourier spectroscopy findings, NO did not affect structural integrity of polypropylene membranes. NO added to gas mixture at 100 ppm did not increase NO2 to toxic level of 2 ppm in 91% of control tests during 4 hours CPB in pigs; mean value was 1.58 ± 0.28 ppm. Methemoglobin concentration did not exceed the upper limit of permissible level (3%), and there were no statistically significant differences with the control group. All tested oxygenators have passed the leakproofness test. According to SEM findings, larger amounts of fibrin deposits were found in the control group oxygenators vs study group.Conclusion. There were no negative effects of NO at 500 ppm concentration on the oxygenator membrane made of hollow polypropylene fibers. NO at 100 ppm in a gas-mixture supplied to oxygenators did not lead to an exceedance of safe NO2 and methemoglobin concentrations in an animal model. Reduced fibrin deposits on hollow fibers of polypropylene oxygenator membranes were observed when with NO at a level of 100 ppm was added to a gas mixture. Цель исследования. Изучить воздействие высоких концентраций оксида азота на полипропиленовые полые волокна оксигенаторов.Материалы и методы. Исследование провели в два этапа. На первом этапе с помощью масс-спектрометрии и инфракрасной спектроскопии выполнили оценку стабильности мембраны оксигенатора из полых волокон полипропилена после шестичасового воздействия воздушно-кислородной смеси, содержащей NO в концентрации 500 пропромилле, или 500 частей на миллион – parts per million (ppm). На втором этапе провели эксперимент на 10 свиньях с подключением аппарата искусственного кровообращения (ИК). Животным основной группы (n=5) в оксигенатор подавали воздушно-кислородную смесь, содержащую NO в концентрации 100 ppm. Животным контрольной группы (n=5) в оксигенатор подавали воздушно-кислородную смесь без NO. Процедура ИК длилась 4 часа, затем следовало наблюдение в течение 12 часов. Оценивали NO, NO2 (на входе и выходе из оксигенатора), динамику метгемоглобина. После отключения от ИК оксигенаторы тестировали на герметичность, а также выполняли сканирующую электронную микроскопию (СЭМ).Результаты. Оксигенатор из полипропиленовых полых волокон сохранял свои газотранспортные характеристики после шестичасового воздействия воздушно-кислородной смеси с добавлением NO в концентрации 500 ppm. По данным ИК-Фурье спектроскопии показали, что NO не влияет на структуру мембран из полипропилена. Добавление NO в дозировке 100 ppm во время 4 часов ИК у свиней не сопровождалось повышением концентрации NO2 до токсичного уровня 2 ppm в 91% измерений: среднее значение составило 1,58 ± 0,28 ppm. Концентрация метгемоглобина не превышала верхнего предела допустимых значений (3%), не обнаружили каких-либо статистически значимых различий при сравнении с группой контроля. Все исследуемые оксигенаторы выдержали тестирование на герметичность. По результатам СЭМ оксигенаторы группы контроля характеризовались большим количеством отложений фибрина, чем оксигенаторы основной группы.Заключение. Негативного воздействия NO в концентрации 500 ppm на мембраны оксигенаторов из полых волокон полипропилена не обнаружили. Подача в оксигенатор NO в концентрации 100 ppm NO2 не приводила к превышению безопасного содержания NO2 и метгемоглобина в эксперименте на животных. Выявили снижение образования отложений фибрина на полых волокнах мембран оксигенаторов из полипропилена при подаче NO в концентрации 100 ppm