903 research outputs found

    Intraoperative neurophysiological monitoring during scoliosis surgery in patients with Duchenne muscular dystrophy

    Get PDF
    PURPOSE: Little is known about the reliability and value of intraoperative neurophysiological monitoring (IONM) in patients with Duchenne muscular dystrophy (DMD) undergoing scoliosis correction surgery. The aim of this study was to investigate the feasibility of IONM and the cortical excitability in these patients. METHODS: Fifteen patients with DMD and scoliosis and 15 patients with adolescent idiopathic scoliosis (AIS) underwent scoliosis correction surgery with the use of IONM. IONM consisted of transcranial electrical stimulation motor evoked potential (Tc-MEP) and somatosensory evoked potential (SSEP) monitoring. The highest Tc-MEP amplitudes were collected to test the feasibility. Preoperative compound muscle action potentials (CMAPs) and transcranial magnetic stimulation (TMS)-MEPs were recorded to test the cortical excitability. SSEPs were scored as elicitable or not elicitable. RESULTS: Tc-MEP amplitudes were significantly lower in the DMD group for both the gastrocnemius and tibialis anterior muscles. However, the abductor hallucis muscle had similar amplitudes in both the DMD as the AIS group. TMS/CMAP and Tc-MEP/CMAP ratios were similar in the DMD and AIS group (P = 0.126 and P = 0.792 respectively). CONCLUSIONS: Tc-MEP and SSEP monitoring is feasible, particularly when Tc-MEPs are recorded from the abductor hallucis muscle in patients with DMD. Similar TMS/CMAP and Tc-MEP/CMAP ratios show that there were no differences observed in cortical excitability between the groups. IONM seems a feasible and valuable neurophysiological tool to signal possible surgically induced damage to the spinal cord during scoliosis correction surgery in patients with DMD

    The influence of depth of anesthesia and blood pressure on muscle recorded motor evoked potentials in spinal surgery. A prospective observational study protocol

    Get PDF
    For high-risk spinal surgeries, intraoperative neurophysiological monitoring (IONM) is used to detect and prevent intraoperative neurological injury. The motor tracts are monitored by recording and analyzing muscle transcranial electrical stimulation motor evoked potentials (mTc-MEPs). A mTc-MEP amplitude decrease of 50-80% is the most common warning criterion for possible neurological injury. However, these warning criteria often result in false positive warnings. False positives may be caused by inadequate depth of anesthesia and blood pressure on mTc-MEP amplitudes. The aim of this paper is to validate the study protocol in which the goal is to investigate the effects of depth of anesthesia (part 1) and blood pressure (part 2) on mTc-MEPs. Per part, 25 patients will be included. In order to investigate the effects of depth of anesthesia, a processed electroencephalogram (pEEG) monitor will be used. At pEEG values of 30, 40 and 50, mTc-MEP measurements will be performed. To examine the effect of blood pressure on mTc-MEPs the mean arterial pressure will be elevated from 60 to 100 mmHg during which mTc-MEP measurements will be performed. We hypothesize that by understanding the effects of depth of anesthesia and blood pressure on mTc-MEPs, the mTc-MEP monitoring can be interpreted more reliably. This may contribute to fewer false positive warnings. By performing this study after induction and prior to incision, this protocol provides a unique opportunity to study the effects of depths of anesthesia and blood pressure on mTc-MEPs alone with as little confounders as possible. Trial registration number NL7772

    Effects of Chronic Atrial Fibrillation on Active and Passive Force Generation in Human Atrial Myofibrils

    Get PDF
    Rationale: Chronic atrial fibrillation (cAF) is associated with atrial contractile dysfunction. Sarcomere remodeling may contribute to this contractile disorder. Objective: Here, we use single atrial myofibrils and fast solution switching techniques to directly investigate the impact of cAF on myofilament mechanical function eliminating changes induced by the arrhythmia in atrial myocytes membranes and extracellular components. Remodeling of sarcomere proteins potentially related to the observed mechanical changes is also investigated. Methods and Results: Myofibrils were isolated from atrial samples of 15 patients in sinus rhythm and 16 patients with cAF. Active tension changes following fast increase and decrease in [Ca2+] and the sarcomere length\u2013passive tension relation were determined in the 2 groups of myofibrils. Compared to sinus rhythm myofibrils, cAF myofibrils showed (1) a reduction in maximum tension and in the rates of tension activation and relaxation; (2) an increase in myofilament Ca2+ sensitivity; (3) a reduction in myofibril passive tension. The slow \u3b2-myosin heavy chain isoform and the more compliant titin isoform N2BA were up regulated in cAF myofibrils. Phosphorylation of multiple myofilament proteins was increased in cAF as compared to sinus rhythm atrial myocardium. Conclusions: Alterations in active and passive tension generation at the sarcomere level, explained by translational and post-translational changes of multiple myofilament proteins, are part of the contractile dysfunction of human cAF and may contribute to the self-perpetuation of the arrhythmia and the development of atrial dilatation

    Ground State Vortex Lattice Structures in d-wave Superconductors

    Get PDF
    We show in a realistic dx2y2d_{x^{2}-y^{2}} symmetry gap model for a cuprate superconductor that the clean vortex lattice has discontinuous structural transitions (at and near T=0), as a function of the magnetic field BB along the c-axis. The transitions arise from the singular nonlocal and anisotropic susceptibility of the dx2y2d_{x^{2}-y^{2}} superconductor to the perturbation caused by supercurrents associated with vortices. The susceptibility, due to virtual Dirac quasiparticle-hole excitation, is calculated carefully, and leads to a ground state transition for the triangular lattice from an orientation along one of the crystal axis to one at 45o^o to them, i.e, along the gap zero direction. The field scale is seen to be 5 Tesla (Δ0/ta)2Φ0 \sim (\Delta_{0}/ta)^{2}\Phi_{0}, where Δ0\Delta_{0} is the gap maximum, tt is the nearest neighbour hopping, aa is the lattice constant, and Φ0\Phi_{0} is the flux quantum. At much higher fields (28T\sim 28T) there is a discontinuous transition to a centred square structure. The source of the differences from existing calculations, and experimental observability are discussed, the latter especially in view of the very small (a few degrees KK per vortex) differences in the ground state energy.Comment: To be published in Phys. Rev.

    Structure of vortex liquid phase in irradiated BSCCO(2212) crystals

    Full text link
    The c-axis resistivity in irradiated and in pristine BSCCO(2212) crystals is measured as a function of the in-plane magnetic field component at fixed out-of-plane component B_\perp in the vortex liquid phase at T=67 K. From this data we extract the dependence of the phase difference correlation length inside layers on B_\perp and estimate the average length of pieces of vortex lines confined inside columnar defects as a function of the filling factor f=B_\perp / B_\phi. The maximum length, about 15 interlayer distances, is reached near f=0.35.Comment: 4 pages, 4 figure

    Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array

    Get PDF
    When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.Comment: Submitted to Nuclear Instruments and Methods in Physics Research Section

    The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches

    Get PDF
    The feasibility of a next generation neutrino observatory in Europe is being considered within the LAGUNA design study. To accommodate giant neutrino detectors and shield them from cosmic rays, a new very large underground infrastructure is required. Seven potential candidate sites in different parts of Europe and at several distances from CERN are being studied: Boulby (UK), Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland), Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The design study aims at the comprehensive and coordinated technical assessment of each site, at a coherent cost estimation, and at a prioritization of the sites within the summer 2010.Comment: 5 pages, contribution to the Workshop "European Strategy for Future Neutrino Physics", CERN, Oct. 200

    Isolated eyelid closure myotonia in two families with sodium channel myotonia

    Get PDF
    Sodium channelopathies (NaCh), as part of the non-dystrophic myotonic syndromes (NDMs), reflect a heterogeneous group of clinical phenotypes accompanied by a generalized myotonia. Because of recent availability of diagnostic genetic testing in NDM, there is a need for identification of clear clinical genotype–phenotype correlations. This will enable clinicians to distinguish NDMs from myotonic dystrophy, thus allowing them to inform patients promptly about the disease, perform genetic counseling, and orient therapy (Vicart et al. Neurol Sci 26:194–202, 2005). We describe the first distinctive clinical genotype–phenotype correlation within NaCh: a strictly isolated eyelid closure myotonia associated with the L250P mutation in SCN4A. Using clinical assessment and needle EMG, we identified this genotype–phenotype correlation in six L250P patients from one NaCh family and confirmed this finding in another, unrelated NaCh family with three L250P patients
    corecore