68 research outputs found

    Trade-offs Between Three Forest Ecosystem Services Across the State of New Hampshire, USA: Timber, Carbon, and Albedo

    Get PDF
    Forests are more frequently being managed to store and sequester carbon for the purposes of climate change mitigation. Generally, this practice involves long-term conservation of intact mature forests and/or reductions in the frequency and intensity of timber harvests. However, incorporating the influence of forest surface albedo often suggests that long rotation lengths may not always be optimal in mitigating climate change in forests characterized by frequent snowfall. To address this, we investigated trade-offs between three ecosystem services: carbon storage, albedo-related radiative forcing, and timber provisioning. We calculated optimal rotation length at 498 diverse Forest Inventory and Analysis forest sites in the state of New Hampshire, USA. We found that the mean optimal rotation lengths across all sites was 94 yr (standard deviation of sample means = 44 yr), with a large cluster of short optimal rotation lengths that were calculated at high elevations in the White Mountain National Forest. Using a regression tree approach, we found that timber growth, annual storage of carbon, and the difference between annual albedo in mature forest vs. a post-harvest landscape were the most important variables that influenced optimal rotation. Additionally, we found that the choice of a baseline albedo value for each site significantly altered the optimal rotation lengths across all sites, lowering the mean rotation to 59 yr with a high albedo baseline, and increasing the mean rotation to 112 yr given a low albedo baseline. Given these results, we suggest that utilizing temperate forests in New Hampshire for climate mitigation purposes through carbon storage and the cessation of harvest is appropriate at a site-dependent level that varies significantly across the state

    Evaluating the climate effects of mid-1800s deforestation in New England, USA, using a Weather, Research, and Forecasting (WRF) Model Multi-Physics Ensemble

    Get PDF
    The New England region of the northeastern United States has a land use history characterized by forest clearing for agriculture and other uses during European colonization and subsequent reforestation following widespread farm abandonment. Despite these broad changes, the potential influence on local and regional climate has received relatively little attention. This study investigated wintertime (December through March) climate impacts of reforestation in New England using a high-resolution (4 km) multiphysics ensemble of the Weather Research and Forecasting Model. In general, the conversion from mid-1800s cropland/grassland to forest led to warming, but results were sensitive to physics parameterizations. The 2-m maximum temperature (T2max) was most sensitive to choice of land surface model, 2-m minimum temperature (T2min) was sensitive to radiation scheme, and all ensemble members simulated precipitation poorly. Reforestation experiments suggest that conversion of mid-1800s cropland/grassland to present-day forest warmed T2max +0.5 to +3 K, with weaker warming during a warm, dry winter compared to a cold, snowy winter. Warmer T2max over forests was primarily the result of increased absorbed shortwave radiation and increased sensible heat flux compared to cropland/grassland. At night, T2min warmed +0.2 to +1.5 K where deciduous broadleaf forest replaced cropland/grassland, a result of decreased ground heat flux. By contrast, T2min of evergreen needleleaf forest cooled –0.5 to –2.1 K, primarily owing to increased ground heat flux and decreased sensible heat flux

    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic

    Get PDF
    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic (March 25 - 27, 2018 -- The University of New Hampshire) paired two of NSF\u27s 10 Big Ideas: Navigating the New Arctic and Growing Convergence Research at NSF. During this event, participants assessed economic, environmental, and social impacts of Arctic change on New England and established convergence research initiatives to prepare for, adapt to, and respond to these effects. Shipping routes through an ice-free Northwest Passage in combination with modifications to ocean circulation and regional climate patterns linked to Arctic ice melt will affect trade, fisheries, tourism, coastal ecology, air and water quality, animal migration, and demographics not only in the Arctic but also in lower latitude coastal regions such as New England. With profound changes on the horizon, this is a critical opportunity for New England to prepare for uncertain yet inevitable economic and environmental impacts of Arctic change

    A longer vernal window: The role of winter coldness and snowpack in driving spring thresholds and lags

    Get PDF
    Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire, USA, that concurrently monitored climate, snow, soils, and streams over a three-year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero-length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter-to-spring transition and throughout the rest of the year

    Enhanced transport protocols

    Get PDF
    The book presents mechanisms, protocols, and system architectures to achieve end-to-end Quality-of-Service (QoS) over heterogeneous wired/wireless networks in the Internet. Particular focus is on measurement techniques, traffic engineering mechanisms and protocols, signalling protocols as well as transport protocol extensions to support fairness and QoS. It shows how those mechanisms and protocols can be combined into a comprehensive end-to-end QoS architecture to support QoS in the Internet over heterogeneous wired/wireless access networks. Finally, techniques for evaluation of QoS mechanisms such as simulation and emulation are presented. The book is aimed at graduate and post-graduate students in Computer Science or Electrical Engineering with focus in data communications and networking as well as for professionals working in this area

    Brief communication: Comparison of in situ ephemeral snow depth measurements over a mixed-use temperate forest landscape

    Get PDF
    The accuracy and precision of snow depth measurements depend on the measuring device and the conditions of the site and snowpack in which it is being used. This study compares collocated snow depth measurements from a magnaprobe snow depth probe and a Federal snow tube in an ephemeral snow environment. We conducted three snow depth sampling campaigns from December 2020 to February 2021 that included 39 open-field and coniferous-, mixed-, and deciduous-forest sampling sites in Durham, New Hampshire, United States. For all sampling campaigns and land cover types, with a total of 936 paired observations, the magnaprobe snow depth measurements were consistently deeper than those of the snow tube. There was a 12 % average difference between the magnaprobe (14.9 cm) and snow tube (13.2 cm) average snow depths with a greater difference in the forest (1.9 cm) than the field (1.3 cm). This study suggests that snow depth measurements using a Federal snow tube can avoid overprobing with an ephemeral snowpack in forested environments.</p

    Potential range of impact of an ecological trap network: the case of timber stacks and the Rosalia longicorn

    Get PDF
    Although the negative impact of timber stacks on populations of saproxylic beetles is a well-known phenomenon, there is relatively little data concerning the scale of this impact and its spatial aspect. Beech timber stored in the vicinity of the forest can act as an ecological trap for the Rosalia longicorn (Rosalia alpina), so in this study we have attempted to determine the spatial range of the impact of a network of timber stacks. Timber stacks in the species’ range in the study area were listed and monitored during the adult emergence period in 2014–2016. Based on published data relating to the species’ dispersal capabilities, buffers of four radii (500, 1000, 1600, 3000 m) were delineated around the stacks and the calculated ranges of potential impact. The results show that the percentage of currently known localities of the Rosalia longicorn impacted by stacks varies from 19.7 to 81.6%, depending on the assumed impact radius. The percentage of forest influenced by timber stacks was 77% for the largest-radius buffer. The overall impact of the ecological trap network is accelerated by fragmentation of the impact-free area. It was also found that forests situated close to the timber stacks where the Rosalia longicorn was recorded were older and more homogeneous in age and species composition than those around stacks where the species was absent. Such results suggest that timber stacks act as an ecological trap in the source area of the local population

    Cardiopoietic cell therapy for advanced ischemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial

    Get PDF
    Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort

    Putting the capital ‘A’ in CoCoRAHS: an experimental programme to measure albedo using the Community Collaborative Rain, Hail & Snow (CoCoRaHS) Network

    No full text
    The Community Collaborative Rain, Hail & Snow (CoCoRaHS) Network is a community‐based network of weather observers and the largest provider of daily precipitation observations in the USA. In this study, we embrace the CoCoRaHS mission to use low‐cost measurement tools, provide training and education, and utilize an interactive website to create the first volunteer snow albedo network to collect high‐quality albedo data for research and education applications. We trained a sub‐set of 18 CoCoRaHS observers in the state of New Hampshire to collect albedo, snow depth, and snow density between 23 November 2011 and 15 March 2012. At less than $700 per observer, CoCoRAHS data measured using an Apogee MP‐200 pyranometer fall within ±0.05 of albedo values collected from a Kipp and Zonen CMA6 at local solar noon. CoCoRAHS values range from 0.99 for fresh snow to 0.34 for shallow, aged snow. Snow‐free albedo ranges from 0.09 to 0.39, depending on the underlying ground cover. In the 2011/2012 dataset, albedo increases logarithmically with snow depth and decreases linearly with snow density. The latter relationship is inferred to be a proxy for increasing snow grain size as snowpack ages and compacts, supported by spectral albedo measurements collected with an Analytical Spectral Devices FieldSpec 4 spectrometer. Copyright © 2013 John Wiley & Sons, Ltd
    • 

    corecore