

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is a publisher-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 5073

To cite this version: VAN WAMBEKE Nicolas, EXPOSITO Ernesto, JOURJON Guillaume and
LOCHIN Emmanuel. Enhanced transport protocols. In: End-to-End Quality of Service Over
Heterogeneous Networks End-to-End Quality of Service Over Heterogeneous Networks.
Springer-Verlag Berlin Heidelberg, Berlin, Allemagne, pp. 111-129. ISBN 978-3-540-79119-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12042720?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5

Enhanced Transport Protocols

Nicolas Van Wambeke, Ernesto Exposito, Guillaume Jourjon, and
Emmanuel Lochin

Summary. The deployment of QoS network services and the entitled set of services
offered by existing transport protocols have motivated the design of new transport
protocols. In this chapter, we present a set of standardised transport protocols and
advanced transport protocol mechanisms to support Quality of Service and satisfy
new application requirements.

5.1 Introduction

At the network layer, despite several studies on the end-to-end QoS guarantees pro-
visioning, the high complexity of these mechanisms results in the domination of
Best-Effort service as the only Internet network service available. The aim of the
enhanced transport protocols is to provide an end-to-end QoS-oriented service and
QoS optimisations or guarantees for current and future multimedia applications by
using available resources and network services (i.e., new network services).

In Sect. 5.2, we introduce the basic transport mechanisms provided by standard
transport protocols (i.e., TCP, UDP, SCTP and DCCP) and, in particular, congestion
and error-control mechanisms. Then, Sect. 5.3 details transport mechanisms used to
implement common transport services. We will see that traditional and more recent
transport protocols are not designed to offer QoS-oriented services. Indeed, these
protocols have mainly focused on the implementation of congestion-control mecha-
nisms to protect and save network resources (i.e., TCP, SCTP and DCCP) while sat-
isfying application requirements only partially. Finally, Sect. 5.4 presents enhanced
transport protocol mechanisms based on QoS-aware error- and congestion-control
mechanisms. Both error-control and congestion-control mechanisms take into ac-
count intrinsic media flow characteristics, network QoS and application time con-
straints. The QoS-aware error-control mechanisms are intended to provide partially
ordered and partially reliable (PO/PR) services. A differentiated and partially reli-
ably service (D-PR) is proposed to satisfy specific reliability requirements of scal-
able multimedia streams. In order to satisfy specific time requirements, the service

112 N. Van Wambeke et al.

is enhanced to provide a time-constrained and differentiated, partially reliable (TD-
PR) service. The TFRC congestion-control mechanism allows enhanced transport
protocols QoS awareness provided by the network, while at the application level the
TD-TFRC congestion-control mechanism takes into account the time and reliability
constraints. The composition of error- and congestion-control mechanisms aimed at
supporting a large set of transport services is finally presented.

5.2 State of the Art of Transport Protocols

The different services available at the transport layer include the conceptual OSI
transport layer model.

The Open System Interconnection (OSI) reference model describes how informa-
tion from an application in one computer moves through a communication medium
to an application in another computer. The OSI reference model is a conceptual
model composed of seven layers, which details specific communication functions.
The model was developed by the International Standardisation Organisation (ISO)
in 1984, and it is now considered the base model for interconnected computers. In-
deed, while layers 5 to 7 of this model have been considered as too complex for the
service they provide, layers 1 to 4 represent the very basic parts of communication
systems.

The transport layer in the OSI model is the lowest layer that operates on an end-
to-end basis between two or more communicating hosts [91]. This layer is located
at the boundary between the host applications and the network layer. A “service” is
defined as the abstraction capability offered by an OSI model layer to a higher one.
Transport services enable applications to abstract from the details of the available
network services. A transport user generally performs three phases of operation:
connection establishment, data transfer and connection termination. A connection-
oriented transport service provides primitives for the three operations and a con-
nectionless service supports only the data transfer phase. Moreover, a connection-
oriented service maintains state information about the connection (i.e., messages se-
quence number, buffer sizes, etc.). Transport services and protocols can differ in
several characteristics:

• Message and byte-stream services: In the case of a message service, users send
messages or service data units (SDUs) having a specified maximum size and
message boundaries are preserved. In the byte-stream service the data sent by the
user are transported as a flow of bytes and message boundaries are not preserved.

• Reliability: comprising no-loss, no-duplicates, ordered and data integrity trans-
port service.

• Blocking and nonblocking: A nonblocking service allows the sender to sub-
mit data and continue operating without taking into account the transport layer
buffering capabilities or the rate at which the user receiver consumes data.
A blocking service avoids overloading the transport layer with incoming data.

5 Enhanced Transport Protocols 113

• Multicast and unicast: A multicast service enables a sender to deliver data to one
or more receivers. A unicast service limits the data delivery to exactly one user
receiver.

• Priority: A priority service enables a sending user to indicate the relative impor-
tance of various messages.

• Security: authentication of transport users, access control to resources, confiden-
tiality and integrity of data, etc.

• Feedback or status-reporting service: allows a transport user to obtain specific in-
formation about the transport entities (i.e., performance, addresses, current timer
values, statistics, etc.).

• Quality of service: A transport layer that explicitly provides QoS allows the qual-
ity specification of the required transmission service by a sender (i.e., delay, jitter,
order, reliability, throughput, security, priority, etc.).

5.2.1 TCP and UDP

Transmission Control Protocol (TCP) offers a reliable and in-sequence end-to-end
data transfer service between two interconnected systems [92]. TCP is a connection-
oriented and byte-stream-oriented service. The User Datagram Protocol (UDP) has
been proposed to offer a light transport service for messages or datagrams [93]. This
UDP light transport service is implemented without the (time-consuming) connec-
tion phase and without the (resource-consuming) errors, congestion- and rate-control
mechanisms. Therefore, UDP offers a connectionless and message-oriented service
with no order and no reliability guarantees. Both TCP and UDP implement a multi-
plexing mechanism to support different applications transmitting several data flows
using the same IP address. Both protocols implement mechanisms for the detec-
tion of corrupted data (i.e., checksum), where if a given set of bit errors is detected
at the receiving side, the data packet is discarded. TCP implements error report-
ing and recovery mechanisms in order to provide a fully reliable service. Moreover,
TCP implements flow and congestion-control mechanisms in order to avoid exceed-
ing receiver buffers capacities and network congestion. Error, flow and congestion-
control mechanisms implemented by TCP may induce transmission delay and vari-
able throughput. Sometimes these effects are not compatible with application re-
quirements such as multimedia applications, which demand throughput and delay
guarantees. As a result, these applications have been implemented using UDP in
combination with other protocols, i.e. Real-Time Transport Protocol (RTP)/Real-
Time-Control Protocol (RTCP) [94], in order to obtain a more suited transport ser-
vice.

5.2.2 TCP Evolution

TCP is at present the most widely used transport protocol in the Internet. Neverthe-
less, while the generic name has remained the same, the current TCP version used is
different from the first TCP version in the early 1980s by Postel [92]. In this section,
we describe four main TCP variants and the reasons that have led to the definition

114 N. Van Wambeke et al.

of these different versions: TCP Tahoe [95], TCP Reno [96], TCP Vegas [97] and
TCP New Reno [98] with SACK [99]. Finally, we present the latest version of TCP
algorithms that has better performance over high-throughput networks and wireless
networks.

5.2.2.1 TCP Tahoe

In the first TCP version described by Van Jacobson in [95], the congestion con-
trol mechanism is based on the estimation of losses by the sender, and a congestion
window regulates the number of packets that can be sent over the network (i.e., emit-
ted rate). The increase of this congestion window follows two different stages: the
slow-start and the congestion-avoidance phase. In the slow-start phase, the conges-
tion window grows exponentially until a certain threshold has been reached. Once
the protocol has reached this value, it follows a congestion-avoidance phase where it
only increases the congestion window by a value of one more segment.

This version of TCP suffered from numerous drawbacks. The first concerns the
Go-back-N error-recovery mechanism. This mechanism is not efficient, mainly be-
cause it can only retransmit packets that have already been received. The second
drawback of this TCP version concerns the method for the detection and recovery
of losses. Loss detection in this version is done using a timer that is triggered for
every packet and staying active, either until the reception of the corresponding ac-
knowledgement packet or until a fast-retransmit occurs. Furthermore, when the loss
is finally detected, the protocol goes back to the slow-start phase with a threshold
value of the half of the actual congestion window.

In order to solve these problems, new mechanisms are required: the selective re-
peat mechanism for the problem of the error-recovery mechanism, and fast-recovery
added to the fast-retransmit mechanism for the problem of the loss detection.

5.2.2.2 TCP Reno

TCP Reno took into account the drawbacks of TCP Tahoe in order to improve the
protocol. It modifies the fast-retransmit algorithm that could have been implemented
in the Tahoe version to integrate the fast-recovery algorithm. The fast-recovery al-
gorithm halves the congestion window instead of going back to the slow-start al-
gorithm. This congestion window is increased during this period by the number of
duplicate ACKs. Furthermore, this version applies the selective repeat mechanism
for the recovery of packets lost. Nevertheless, these mechanisms also contain some
minor drawbacks: the successive fast-retransmit problem or the false fast-retransmit
followed by a false-recovery problem. This version also suffers from performance
problems when multiple packets are dropped in the same sending window.

5.2.2.3 TCP Vegas

TCP Vegas [97] proposes new algorithms for the slow-start phase, the estimation
of the available bandwidth in the congestion-avoidance phase and loss detection.

5 Enhanced Transport Protocols 115

In order to detect congestion in the network, TCP Vegas defines a BaseRTT as the
minimum measured RTT and the ExpectedRate as the ratio of the congestion win-
dow to the BaseRTT . Furthermore, the sender measures the ActualRate based on the
sample RTT . Then, if the difference between the ExpectedRate and the ActualRate
is superior to an upper bound, the sender linearly decreases the congestion window
during the next RTT . Otherwise, if this difference is lower than a lower bound, the
sender linearly increases the congestion window. According to [97], this TCP version
achieves a better rate than the Tahoe and Reno TCP versions. Nevertheless, this ver-
sion was never deployed due to scalability and stability concerns identified later in
[100, 101]. One of the main drawbacks of TCP Vegas concerns its poor performance
when mixed with other TCP versions.

5.2.2.4 TCP New Reno

In order to improve the behaviour of TCP Reno when multiple packets are lost in
the same window, TCP New Reno has been proposed. In this version, a modified
version of the fast recovery algorithm has been integrated, where partial ACKs are
used to indicate multiple losses in the same window. This new fast-recovery algo-
rithm has been described in [98]. This version of TCP appears to be adequate for
wired networks where the bandwidth-delay product is not too high, but performs
poorly over high bandwidth-delay product and wireless networks. For instance, the
problems over wireless networks are due to the interpretation of a lost packet, be-
cause the TCP loss-detection mechanism supposes that packets are lost because of
congestion in the network. However, in a wireless network, these losses can be due
to channel errors or bad transmission.

These facts have motivated new TCP enhancements that are presented in the
following section.

5.2.2.5 TCP Variants for High-Throughput and Wireless Networks

Nowadays, networks offer increasing bandwidth capacities to the end user. Neverthe-
less, TCP alone cannot take advantage of these new services, because of the additive
increase/multiplicative decrease (AIMD) algorithm, which makes TCP too slow to
adapt its sending rate to the network’s bottleneck. In order to solve this problem,
two kinds of transport protocols, based on a variation of the TCP AIMD congestion
avoidance phase algorithm, have been proposed. The first proposals remain close to
TCP as they do not require routers to modify their internal algorithms and marking,
such as in BIC, HSTCP or STCP protocols [86, 102, 103]. The second set of propos-
als, such as XCP [104] and VCP [105], performs better than both TCP New Reno,
but requires the network to provide information about the actual network congestion
level using an ECN-like mechanism [106].

Nowadays, another TCP problem concerns its poor performance over wireless
networks. TCP has been designed to perform over wired networks where a packet
lost means network congestion. As a result, the congestion-control mechanism—as
described above with the fast-recovery and fast-retransmit mechanism—decreases

116 N. Van Wambeke et al.

the congestion window, in order to reduce the congestion in the network. Neverthe-
less, in the case of wireless communications, losses can also be due to urban obsta-
cles, mobility of devices or channel interferences. In this context, new versions of
TCP congestion control have been proposed such as WTCP [107] or TCP Westwood
[108]. Another solution, TCP Veno (Vegas + Reno), proposed to let TCP Vegas es-
timate the available bandwidth and to act as TCP Reno when a loss is detected due
to congestion [109]. Nowadays, the current TCP used in the Internet are TCP New
Reno (*BSD), TCP Westwood (Microsoft Windows Vista), and a TCP BIC variant
(GNU/Linux) all with selective acknowledgement (SACK) enabled by default.

5.2.3 SCTP

The Stream Control Transmission Protocol (SCTP) is a reliable transport protocol,
which operates on top of a connectionless packet network protocol, such as IP, and
offers a reliable transport service [86]. SCTP is unicast and session oriented. An
SCTP session is an association established between two end systems. When end sys-
tems present several network addresses, the address list is exchanged during the asso-
ciation establishment phase. Supporting several IP addresses within the same SCTP
session is known as multihoming. The SCTP error control detects lost, disordered,
duplicated or corrupted packets and uses retransmission schemes to implement the
error-recovery mechanism. SCTP uses selective acknowledgements (SACK) in or-
der to confirm data reception. Retransmission is done after a time-out or when the
SACKs indicate that some SCTP packets have not been received. In contrast to TCP,
SCTP is a message-oriented transport protocol. SCTP packets are composed of a
common header and data chunks. Multiple chunks may be multiplexed into one
packet up to the path-MTU size. A chunk may contain either control information
or user data. SCTP offers a multistream service, which means that application data
can be partitioned in multiple flows that can be delivered using several independent-
ordered streams. SCTP does not enforce any ordering constraints between the differ-
ent streams. It provides a full-ordered intrastream service and a full-unordered inter-
stream service. This service guarantees that data delivery over the rest of streams is
not affected if some loss or disordering is detected in a stream. In contrast, flow and
congestion control are implemented on the association basis and not independently
for every stream. These mechanisms are based on the TCP algorithms: the receiver
informs the sender about the reception buffer capacity and a congestion window
is maintained for the SCTP association. The slow-start, congestion-avoidance, fast-
recovery and fast-retransmission mechanisms are implemented following the TCP
algorithms, but using the SCTP packets as the acknowledgement unit. Applications
accepting a partially ordered transport service can take advantage of the multistream
service provided by SCTP. However, the effects of the fully reliable service of SCTP
can be incompatible with multimedia applications presenting bandwidth, delay, jit-
ter and synchronisation constraints. Currently, a partial reliability extension to SCTP
has been proposed [110]. In this proposal only a timed reliability service has been
specified. Timed reliability means that the user can specify the lifetime of a message.
However, this mechanism could be insufficient for time-constrained applications pre-

5 Enhanced Transport Protocols 117

senting specific ADU reliability requirements and interdependency constraints (e.g.,
I, P and B frames of MPEG video).

5.2.4 DCCP

The Datagram Congestion Control Protocol (DCCP) offers a nonreliable transport
service for datagram flows [111]. DCCP provides a congestion-control mechanism
in order to behave fairly with other TCP flows. DCCP uses a Congestion Control
Identifier or CCID to identify the congestion control to be used for each direction
of the DCCP connection. This congestion control can be configured according to
two profiles numbered Congestion Control ID (CCID) 2 or 3. In CCID 2 [112], a
congestion control similar to the window-based congestion control is provided. In
CCID 3 [113], a rate-based congestion control is provided. This congestion control
is based on the TCP-Friendly Rate Control (TFRC) [114].

DCCP is suited to applications currently using UDP. In order to avoid network
congestion, applications that use UDP should implement their own congestion-
control mechanism. DCCP aims to deliver a transport service that combines both
the efficiency of UDP and the congestion control and network friendliness of TCP.
DCCP allows the negotiation of some connection properties to be used such as the
congestion-control mechanism.

DCCP can be used by applications presenting time constraints and which are able
to adapt their transmission rate to the limitations imposed by the congestion-control
mechanism. If a certain reliability is needed, DCCP designers propose to implement
error-recovery mechanisms (i.e., data retransmission or redundancy) at the applica-
tion level. Nevertheless, the implementation of these mechanisms at the user space
increases development efforts and can be less efficient than transport mechanisms
operating in the kernel space.

5.2.5 Discussion

In this section a survey of the main transport protocols has been presented. This
study demonstrates that traditional and new generation transport protocols have been
designed taking into account only a subset of the QoS requirements of multime-
dia applications. These protocols have mainly focused on the implementation of
congestion-control mechanisms to save network resources (i.e., TCP, SCTP and
DCCP) while providing either full order and full reliability or nonorder and non-
reliability. Moreover, mechanisms intended to satisfy time constraints are not sup-
ported at the transport layer. A QoS-oriented transport service based on the delay,
jitter, throughput and synchronisation constraints of the multimedia applications and
taking into account the partial order and partial reliability tolerance, as well as the
scalable characteristics of multimedia flows, has not yet been provided. This is the
reason that led us to propose the design of a new generation transport protocol aimed
at providing end-to-end QoS guarantees. These protocols have to be designed to be
easily configured from the requirements of current and future multimedia applica-
tions. This means that, first, the services provided by enhanced transport protocols

118 N. Van Wambeke et al.

should be transparently deployed for existing applications, minimising the adaptation
efforts (i.e., preservation of standard transport API, transparent adaptation to legacy
RTP streaming applications, etc.). Second, these specialised services should be ac-
cessible to new multimedia applications that are able to explicitly specify their QoS
requirements (i.e., providing a QoS-enhanced transport API). Moreover, transport
mechanisms taking into account underlying communication services (i.e., network
services) could be implemented to provide soft or hard end-to-end QoS guarantees.
A survey of common transport mechanisms implemented at the transport layer is
presented in the next section.

5.3 Transport Mechanisms

The previous section presented services provided by common transport protocols. In
this section, the basic mechanisms generally used to implement these common trans-
port services are introduced. In particular, the congestion-control and error-control
mechanisms are described.

5.3.1 Overview

In [115], the authors gave the following definitions of the basic transport layer mech-
anisms. They focused particularly on error and congestion, which are the two pillar
mechanisms of a transport protocol.

• Error-control techniques protect against loss or damage of user data and control
information. Error control is performed in two phases: error detection, and error
reporting and recovery. Error detection identifies lost, disordered, duplicated and
corrupted Transport Protocol Data Units (TPDUs). Error reporting is a mecha-
nism where the transport receiver informs the sender about errors detected. Error
reporting may be implemented by positive acknowledgement of data received
(ACK) or negative acknowledgement of errors detected (NACK). Error recovery
mechanisms are used by the sender or receiver in order to recover from errors.
They can be implemented by retransmission strategies (i.e., Automatic Repeat
request or ARQ) or redundancy mechanisms (i.e., Forward Error Correction or
FEC).

• Flow and congestion control: Flow control is a mechanism implemented by the
transport layer to limit the rate at which data are sent over the network in order to
avoid exceeding the capacity of the transport receiver entity. Congestion-control
mechanisms are intended to preserve network resources in order to avoid network
congestion.

• Multiplexing and demultiplexing are mechanisms implemented by a transport
protocol in order to associate several Transport Service Access Points (TSAPs) to
a single Network Service Access Point (NSAP). In other words, this mechanism
enables supporting several transport layer connections using the same network

5 Enhanced Transport Protocols 119

layer connection. The use of protocol port numbers to perform the multiplex-
ing/demultiplexing operations allows multiple transport users to use the same
network address.

• Segmentation and reassembly: When the size of the Transport Service Data Units
(TSDUs) is bigger than the allowed size of the Network Service Data Units
(NSDUs), the TSDUs have to be segmented into smaller TPDUs by the trans-
port sender. The transport receiver reassembles the TPDUs in order to rebuild the
TSDUs to be delivered to the user receiver.

• Other mechanisms: Some transport protocols implement other specialised mech-
anisms, such as concatenation/separation and splitting/recombining. Concatena-
tion combines several TPDUs into one NSDU in order to reduce the number of
NSDUs submitted to the network layer. Separation of concatenated TPDUs will
be performed by the transport receiver entity. The splitting operation is oppo-
site to the multiplexing functions. Several NSAPs can support a single TSAP,
thus providing additional resilience against network failures and increasing the
throughput capabilities.

The next paragraphs will present a detailed study related to congestion-control
and error-control mechanisms intended to evaluate the most adequate mechanisms
for enhanced transport protocols.

5.3.2 Congestion-Control Mechanisms

The Internet protocol architecture is based on a connectionless end-to-end packet
service using the IP protocol. These characteristics offer advantages in terms of flex-
ibility and robustness, but a careful design is also required to provide good service
under a heavy load. In fact, lack of attention to the dynamics of packet forwarding
can result in severe service degradation. This phenomenon is technically called “con-
gestion collapse” [116]. Network congestion is characterised by excessive delay and
losses in delivering data packets. Congestion-control mechanisms are intended to
avoid network congestion and its consequences. In [117] congestion-control mecha-
nisms are classified into rate-control, rate-shaping and rate-adaptive encoding. Rate-
control and rate-shaping mechanisms can be implemented as transport layer func-
tions. In contrast, rate-adaptive encoding is based on compression techniques, being
suitable for implementation as an application layer function. In this work, only rate-
control and rate-shaping mechanisms able to be implemented at the transport layer
will be studied.

5.3.2.1 Window-Based Congestion Control

Window-based congestion control was originally proposed for the TCP transport
protocol [118]. This mechanism probes the available network bandwidth by slowly
increasing a congestion window limiting the data being inserted into the network by
the source. Detection of packet loss is considered as an indication of network con-
gestion and the congestion window is reduced in order to avoid network collapse.

120 N. Van Wambeke et al.

TCP-like congestion-control mechanisms are typically coupled with error-correction
mechanisms (i.e., retransmissions), which can increase data delivery delay. For this
reason, these mechanisms are considered as being noncompliant with the time con-
straints of multimedia flows.

5.3.2.2 Rate-Based Congestion Control

The rate-based congestion control mechanisms are characterised by the use of an es-
timation of the available network bandwidth as the allowed transmission rate. Rate-
based mechanisms may use information about losses in order to calculate the trans-
mission rate. This characteristic makes the rate-based mechanisms more suitable for
controlling network congestion when full reliability is not required. Rate control can
be performed by the source, the receiver or a combination of both [117]. The avail-
able network bandwidth can be estimated following a probe-based or a model-based
approach.

5.3.3 Reliability Mechanisms

Packet loss is one of the consequences of network congestion in traditional IP net-
works. During data transmission, packets are temporarily stored in intermediate nodes
before being forwarded to their final destination. When storage capacities are ex-
ceeded, some packets are dropped. As explained in previous sections, the degree of
tolerance of packet loss depends on the type of application. Some applications are
able to tolerate a certain degree of packet losses (i.e., audio, video, images, etc.),
while for other applications packet loss is unacceptable (i.e., data files, text, etc.).
Two main error-control mechanisms have been proposed for implementation at the
transport layer. The first mechanism is known as Forward Error Correction or FEC
[117]. FEC is performed by the data source and it is based on adding redundant in-
formation to the data packets to be transmitted. Redundant information will be used
by the receiver to recover lost packets. The second error-control mechanism, called
Automatic Repeat Request or ARQ, is based on the retransmissions of lost packets.
Retransmissions can be demanded by the receiver when losses are detected or be
performed by the source if the packets are not acknowledged after some time. Other
mechanisms, such as error resilience and concealment, have been proposed at the
application layer. Error-resilience mechanisms are intended to prevent error prop-
agation or to limit the consequences of packet losses in the compressed data flow
(i.e., synchronisation marks, data partitioning, etc.) [119]. Error-concealment mech-
anisms are performed by the receivers in order to hide the consequences of losses to
the final user (i.e., spatial or temporal interpolation, replacement of lost frames by
the previous ones, etc.) [120]. Hereafter, only the error-control mechanisms capable
of implementation at the transport level will be studied.

5.3.3.1 Automatic Repeat Request

Automatic Repeat Request (ARQ) is an error-control mechanism based on the re-
transmission of packets considered as lost or damaged. This mechanism has been

5 Enhanced Transport Protocols 121

used to provide reliability in a number of communication protocols. Loss detection
and recovery signalling techniques are specific to each communication protocol. The
next paragraphs introduce some of these protocols and show how the ARQ mecha-
nism has been implemented.

Stop-and-Wait ARQ offers the simplest reliability service at the transport level.
A sender using the Stop-and-Wait protocol transmits a TPDU and then waits for a
response. The receiver waits for a TPDU and sends an Acknowledgement (ACK)
if the TPDU has been correctly received or a Negative Acknowledgement (NACK)
otherwise. In practice, the receiver may not be able to detect lost TPDUs, and the
sender needs to implement a timer to retransmit the TPDU when no response has
been received from the receiver. If an ACK has been received, the transmitter can
start sending the next TPDU. In order to detect duplicated TPDU or ACKs, each
message has to be uniquely identified using, for instance, a sequence number.

In contrast to the Stop-and-Wait mechanism, Go-Back-N ARQ allows the simul-
taneous transmission of multiple TPDUs, as allowed by the transmission window
size. Each TPDU must be identified uniquely by a sequence number. The source
must keep in memory all the TPDUs that have been sent, but have not been yet ac-
knowledged. The receiver must keep in memory the highest TPDU sequence number
correctly received. When a packet loss is detected, the receiver sends a negative ac-
knowledgement packet and all the received packets with a sequence number higher
than the lost packet are discarded. The source restarts the Go-Back-N retransmis-
sion, since the TPDU corresponding to the sequence number indicated in the NACK
packet.

Selective Repeat is a more complex, but more efficient error-control mechanism.
This scheme is employed by the TCP transport protocol. Similar to the Go-Back-
N mechanism, the retransmission is performed in response to the selective repeat
feedback sent by the receiver. However, the sender retransmits only the TPDU for
which the selective repeat has been indicated. This feature reduces the number of
retransmissions, but increases the complexity at the sender and receiver. Indeed, each
TPDU must be acknowledged individually, and the receiver must keep in memory
packets received out of sequence.

In [95] a TCP extension was proposed, implementing the concept of Selective
Acknowledgement (SACK). By sending selective acknowledgements, the receiver
of data can inform the sender about all segments that have arrived successfully, so
the sender needs to retransmit only the segments that have actually been lost. In [121]
an implementation of this Selective Acknowledgement mechanism combined with a
selective repeat retransmission policy was proposed.

5.3.3.2 Flow Control

In order to prevent the receiver from dropping packets because its receiving buffer
is full, the receiver needs to inform the sender about the available space in its buffer.
Usually this mechanism is performed based on the exchange of information concern-
ing the available buffer space at the receiver and the update of a variable representing

122 N. Van Wambeke et al.

this information at the receiver each time a packet is sent. As a result, the sender will
stop sending data when it supposes that the buffer is full—even if this is not correct.

5.3.4 Discussion

In this section, a survey of different congestion and error control mechanisms has
been presented. Congestion-control mechanisms including transport- and application-
based approaches have been presented. Within these mechanisms, a rate-based con-
gestion control seems to be more suitable. Indeed, rate-based mechanisms have been
designed for implementation at the transport level and independently of error-control
mechanisms. Furthermore, these mechanisms could be enhanced in order to be more
compliant with time-constrained applications. This enhancement can be done us-
ing the scalable characteristics of media flows (i.e., using a rate-shaping approach)
in order to take into account not only the available network resources, but also in-
trinsic time constraints as well as partial ordering and partial reliable tolerance of
applications. Regarding error-control mechanisms, FEC and ARQ have been intro-
duced. These mechanisms could be enhanced in order to be more compliant with
time-constrained applications.

5.4 Enhanced Transport Protocol Mechanisms

5.4.1 TFRC and gTFRC, a QoS-Aware Congestion Control

TCP-Friendly Rate Congestion Control (TFRC) is an equation-based rate-control
mechanism, which aims at reproducing the behaviour of TCP congestion control.
The TCP equation presented in [122] and used in TFRC is

X = s(
RTT ·

√
p·2
3 + RTO ·

√
p·27

8 · p · (1 + 32 · p2)
) . (5.1)

The use of an equation instead of the AIMD algorithm (used by window-based
congestion-control mechanisms) in order to estimate the sending rate produces
smoother throughput variations. Furthermore, the TFRC congestion control is based
on a datagram-based communication instead of the stream-based TCP connection.

Even if the knowledge of the guaranteed bandwidth could be provided to the
transport level, the AIMD principle integrated into TCP does not use the instanta-
neous throughput as an input value for its congestion control. Only acknowledge-
ments and time-out analysis allow TCP to act on the rate control. On the contrary,
the TFRC mechanism makes use of the instantaneous throughput in conjunction with
the flow RTT and loss events. These parameters are used in order to compute the con-
trolled rate. In the following, we assume a network that is well-provisioned and that
the whole in-profile traffic does not exceed the resource allocated to the considered
class of service; for instance, the AF class. In case of excess bandwidth in the net-
work, the application can send more than its given target rate, say g, so the network

5 Enhanced Transport Protocols 123

should mark its excess traffic out-of-profile. If the network becomes congested, this
out-of-profile traffic is predisposed to be lost first. In such a case, the optimal rate
estimated by TFRC still can be below the target rate g needed by the application and
provided by an underlying CoS; for instance, a DiffServ network. In such a case,
TCP would react in the same manner by halving its congestion window. As for TCP
in the AF class, the TFRC flow is not aware that the loss is corresponding to an
out-of-profile packet and that it should not decrease its emitted throughput below the
target rate.

In contrast to TCP, the usage of the TCP equation allows the direct usage of the
actual sending rate in conjunction with the flow RTT and loss event values. A new
resulting congestion control mechanism, called gTFRC, can be thus made aware of
the target rate negotiated by the application with the DiffServ-like network. Thanks
to this knowledge, the application flow is sent in conformance with the negotiated
QoS while staying TCP-friendly in its out-of-profile traffic part. This is achieved by
computing the sending rate as the maximum between the TFRC rate estimation and
the CoS target rate as given in (5.2):

G = max(g,X). (5.2)

G is the transmission rate in bytes/s; g is the target rate in bytes/s and X is the
transmission rate in bytes/s computed by the TCP throughput algorithm. The rest of
the gTFRC mechanism follow entirely the TFRC specification in [114].

gTFRC requires the knowledge of the underlying bandwidth guarantee provided
by the DiffServ/AF network service to the session. This information is available to
the mechanism at socket-creation time, directly by the application. This parameter
is given to the application, after it has been previously negotiated in an end-to-end
basis by the signalling mechanism provided by the QoS architecture (as an example
see the EuQoS architecture in Chap. 6).

5.4.2 Application-Aware Transport Mechanisms

In this section, the enhancement of specific transport mechanisms in order to make
them more compliant with the application’s QoS requirements while taking into ac-
count constrained network services (i.e., Best-Effort service) is proposed. This en-
hancement is done by a cross-layer communication between the transport protocol
and the application layers.

5.4.2.1 Application Profile-Aware Congestion Control

Currently, most commercial multimedia applications (i.e., streaming and conferenc-
ing applications) do not implement congestion-control mechanisms. The implemen-
tation of a congestion-control mechanism for these kinds of applications is required
in order to reduce the risks of future congestion collapse of the Internet, due to flows
that do not use end-to-end congestion control [116]. These applications are usually
implemented using RTP/UDP protocols to transmit media flows. Real-time flows

124 N. Van Wambeke et al.

are either transmitted using a near-constant rate or an adjustable rate based on the
feedback obtained from the receiving application (i.e., RTCP messages). But even
when applications are able to adapt their sending rate, it is usually done in long time
scales. Some studies have been conducted in order to propose congestion control
mechanisms adapted to the characteristics of these applications [123]. As we have
seen, one of these mechanisms is the TCP-Friendly Rate Control (TFRC).

The rate-control mechanism of TFRC is based on a delaying policy aimed at
adapting the flow to the allowed sending rate. This mechanism can penalise applica-
tions with strict delay constraints. For these applications, received packets could be
discarded if they arrive too late to be presented. An alternative to the delaying policy
implemented by TFRC may be a quality adaptation policy. Quality adaptation mech-
anisms can be performed by applications (i.e., adaptive encoding, switching between
multiple preencoded version, etc.). But usually these mechanisms are executed in
long time scales. We propose performing quality adaptation at the transport level.
This requires that QoS information describing the multimedia flows must be avail-
able at the transport layer. This information must include at least the time constraints
associated to every ADU as well as specific QoS information aimed at performing
the quality adaptation (i.e., ADU priorities, dependency, order, etc.). The delaying
strategy of TFRC is based in a computation of the interpacket interval time (IPIT)
for every data packet to be transmitted. TFRC calculates this IPIT value as follows:

IPIT = s

r
, (5.3)

where s is the packet size and r is the allowed sending rate. The IPIT value represents
the time to delay the current data packet in order to respect the allowed sending rate.
If the QoS information associated to data packets include the delivery time stamp of
every packet to the receiving application, then the feasibility of this delaying strategy
could be checked, taking into account the end-to-end delay of the applications. The
one-way delay must be known in order to perform this temporal validation. The one-
way delay can be estimated using the RTT estimated in TFRC:

oneWayDelay = RTT

2
. (5.4)

Using the one-way delay, the delivery time stamp of the current data packet can
be calculated as follows:

eDeliveryTimestamp = now + IPIT + oneWayDelay, (5.5)

where now is the current time. Data packets can be considered as obsolete by the
receiving application if the following equation is valid:

eDeliveryTimestamp − timestamp > MAXDELAY. (5.6)

The time stamp is the scheduled delivery date. MAXDELAY expresses the delay
tolerance of the application (i.e., 400 ms for interactive application). These obso-
lete packets will be generally discarded by receiving applications. However, if the

5 Enhanced Transport Protocols 125

temporal validation is performed by the source, discarding could be anticipated in
order to avoid wasted bandwidth. Nevertheless, this basic discarding policy could
seriously affect the QoS perceived by the final user if important Application Data
Units (ADUs) are discarded. Selective frame-discarding methods based on ADU-
related QoS information can be used to optimise the QoS provided to the user, while
preserving network resources and respecting the application delay constraints. This
selective frame-discarding method can be applied if the medium has been encoded
using specific compression and ADU segmentation techniques, which facilitate the
implementation of this method at the transport layer (i.e., Application Level Fram-
ing/ALF approach for the segmentation of flows such as MPEG, H.263, MJPEG,
etc.). This method could also be implemented at the multimedia transport level,
where the TFRC sending rate can be shared between the flows comprising the mul-
timedia session. In this case, scalable flows could grant part of the allowed rate to
other flows presenting poor adaptive capabilities (i.e., audio flows). Similarly to the
multilayered multicast flows, for transport-level quality adaptation strategy, several
quality layers could be defined using the QoS description of the ADUs composing
the multimedia flows. For instance, for an MPEG flow composed by I, P and B im-
ages, three quality layers could be defined:

• Layer 2: I, P and B images
• Layer 1: only I and P images
• Layer 0: only I images

If the TFRC sending rate is lower than the rate demanded for the layer 0, other
layers composed by subsets of I images and presenting lower rates could be defined.
For a multimedia session, the same scheme can be used. For instance, for a session
composed by a H.263 video with I and P pictures and a GSM audio flow, the follow-
ing quality layers could be defined:

• Layer 2: Video (I+P) + Audio
• Layer 1: Video(I) + Audio
• Layer 0: Only Audio

Likewise, new layers could be defined for this multimedia session using inter-
mediate quality levels placed between the specified layers. The definition of these
differentiated layers allow us to propose an enhancement to the TFRC algorithm
(TD-TFRC) intended to provide a rate control compatible with the time constraints
and the intrinsic characteristics of multimedia flows. The next algorithm describes
this specialisation of the TFRC mechanism:

currentLayer=0 join layer(currentLayer) while (sessionIsActive)
{
/* When feedback received or noFeedBack timeout : estimation of
TFRC parameters and compute r */

/* filtering */
if (currentPacket.layer > currentLayer)

currentPacket.discard = true
else {

126 N. Van Wambeke et al.

// inter-packets interval
IPIT = currentPacket.size / r;
// estimation of time of data delivery
eDeliveryTimestamp = (now + t_ipi + RTT/2 + delta)
// estimation of presentation delay eDelay =
eDeliveryTimestamp - currentPacket.timestamp

// quality adaptation action in response to the
// estimated delay
if (eDelay <= MinDelayThreshold) // i.e. 50 ms

action=increase
else {

//i.e. 400 ms action = decrease
if (eDelay >= MaxDelayThreshold)
// quality adaption decrease action
if (action == decrease)

if (currentLayer == MIN_LAYER && eDelay \
< MinDELAY)

drop layer(currentLayer) STOP
else

if (currentLayer > MIN_LAYER)
currentLayer = currentLayer - 1;
currentPacket.discard = true

// quality adaption increase action
if (action == increase && currentLayer < \

MAX_LAYER)
currentLayer = currentLayer + 1;

} //scheduling of current packet
transmission if not currentPacket.discard
scheduleTransmission
currentPacket,t_ipi
}

Now is the current time, RTT is the round-trip time and delta is a tolerance con-
stant including error in time estimations. In order to avoid abrupt changes in the QoS
provided to the final user, quality layer increase and decrease actions have been pro-
posed to be tailored by the MinDelayThreshold and MaxDelayThreshold
obtained from the QoS requirements.

5.4.2.2 QoS-Aware Error Control Mechanism

As previously explained, some multimedia applications present some preference for
timeliness over order and reliability. Actually, many of these applications do not re-
quire a fully ordered and fully reliable transport service when the delay incurred
by this service is not compatible with their time constraints. For this reason, most
multimedia applications have been designed to use the UDP protocol without any
guarantees of order and reliability. In some cases, these applications have to imple-
ment ad-hoc error control mechanisms to satisfy their requirements. In this section
we present an error control mechanism based on the partial ordering and partial reli-
ability constraints of multimedia flows aimed at improving the QoS delivered to the
multimedia applications.

5 Enhanced Transport Protocols 127

Fig. 5.1. Space of solution of the POC service

Transport protocols offering a partially ordered and/or a partially reliable (PO/PR)
service have been proposed in several research works. The Partial Order Connection
protocol (POC) was one of the first works proposing a partially ordered transport ser-
vice for multimedia applications [124]. Unlike classic transport protocols that deliver
objects either in the exact order transmitted or according to no particular order, POC
provides a partial order service where some, but not all, objects have to be received in
the order transmitted. This protocol has been designed to provide a partially reliable
service, which accepts a subset of transmitted objects to be lost. A POC service spec-
ification can be defined by a subspace inside the whole space of partial ordered and
reliable services, which can be realised for the delivery of a given set of Application
Data Units (see Fig. 5.1).

In [125] the use of this family of protocols in the transport of video streams was
studied. It was demonstrated that POC connections do not only fill the conceptual
gap between TCP and UDP, but also provide real performance improvements for
the transport of multimedia streams such as MPEG video. Other approaches, based
on the POC concept and proposing the use of QoS requirements in order to offer a
PO/PR services, have been presented. For instance, the partial reliability extension
to SCTP (PR-SCTP) introduces the concept of timed reliability to implicitly regu-
late the error-control mechanism. However, a solution integrating the time, order,
reliability and synchronisation constraints has not yet been proposed.

This section presents some error-control mechanisms aimed at providing PO/PR
services. These mechanisms could be explicitly configured by specific order and re-
liability QoS requirements or implicitly deduced from the application requirements
(i.e., delay, jitter, synchronisation, etc.). In both cases, specific QoS information de-
scribing the ADU characteristics has to be provided by applications in order to ensure
that adequate order and reliability policies are applied by the error control mecha-
nism.

5.4.2.2.1 Partially Ordered Service (PO)

A partially ordered service can be provided by the error-control mechanism at two
levels:

• Medium or intraflow level: specific QoS information could be used by the trans-
port protocol delivery mechanism in order to offer a partially ordered delivery
service for the ADUs composing a flow. For instance, packets comprising the
JPEG2000 or MJPEG2000 flows could be delivered by a partially ordered ser-

128 N. Van Wambeke et al.

vice deduced from the ADU description (i.e., resolution layers, region of interest,
etc.).

• Multimedia or interflow: ETP can use the interflow synchronisation constraints to
schedule the transmission and delivery of data packets for every flow, permitting
a certain degree of out-of-order delivery. For instance, a session composed of
two audio and video flows may be delivered with a partially ordered service
between the audio and video ADUs, but respecting the interflow synchronisation
constraints (e.g., 80 ms for lip synchronisation).

Transport mechanisms oriented to provide a PO service could be controlled by
the source or receiver transport entities. Source control could be implemented fol-
lowing sending rate constraints imposed by congestion-control mechanisms in order
to optimise the ADU transmission (i.e., sending first ADU with higher priorities).
A partially ordered service could be scheduled taking into account intrinsic charac-
teristics of ADUs (i.e., time stamp, dependency, etc.). A receiver controlled mech-
anism could optimise the delivery of data packets to the receivers when a partial
order is permitted (i.e., ADUs corresponding to independent segments or tiles of
JPEG2000 images). Furthermore, both PO source-based and receiver-based mecha-
nisms could be implemented for unicast or multicast protocols.

5.4.2.2.2 Partially Reliable Service (PR)

A partially reliable service can be implemented based on the explicit reliability re-
quirements of the application, or implicitly from intrinsic time constraints. FEC and
ARQ mechanisms may be enhanced in order to provide this specialised error con-
trol mechanism. FEC mechanisms have been described as being very dependent on
the traffic-loss characteristics. Furthermore, these schemes are usually designed to
offer a full ordered and full reliable service when implemented at the transport layer.
Partial order and partial reliability services using FEC have not been widely studied.

5.4.2.2.3 Partially Reliable, Differentiated and Time-Constrained ARQ (D-PR &
TD-PR)

ARQ error-control mechanisms work as follows: when a loss is detected, the receiver
sends a feedback message to ask the source to retransmit the message. This means
that a retransmitted packet arrives at least three one-way delays after the transmission
of the original packet. Sometimes, this delay could exceed the delay constraints of
the application. However, if the one-way delay is short, this mechanism could be
efficiently used to recover the losses. Time-constrained ARQ mechanisms could be
implemented for unicast connections by receiver or source-based methods:

• Receiver-based: The objective of this mechanism is to avoid the request of re-
transmission demands, which would not arrive on time for their presentation.
When a loss is detected before demanding its retransmission, the following con-
dition has to be checked:

if (now + RTT < presentationTime)
ask for retransmission

5 Enhanced Transport Protocols 129

Now is the current time and RTT is the round-trip time. The problem with this
method is that the receiver has to know the scheduled presentation time of lost
packets.

• Source-based: This error-control method is intended to avoid retransmissions of
packets that will arrive too late to be presented. The retransmissions can be de-
manded by the receiver when losses are detected. The source will check the fol-
lowing condition before performing the retransmission:

if (now + RTT/2 < presentationTime)
retransmission of packet

This mechanism can be easily implemented by the source if QoS information
related to the time presentation is available at the transport layer. Indeed this
method can be used to provide a differentiated and partially reliable service, tak-
ing into account the notion of differentiated layers previously introduced.

5.5 Conclusions

The mechanisms discussed in this chapter include congestion-control mechanisms
that are intended to preserve the resources of networks by providing a Best-Effort
service. An error-control mechanism was presented that is intended to provide a par-
tially ordered (PO) and partially reliable (PR) service, explicitly or implicitly con-
figured from the application requirements. This error-control mechanism has also
been enhanced in order to provide a differentiated and partially reliable service (D-
PR). Both error- and congestion-control mechanisms have been enhanced in order to
take into account intrinsic application time constraints (TD-PR & TD-TFRC). The
composition of error- and congestion-control mechanisms to provide a large set of
transport services has been discussed.

As it will be seen in the next chapter, the full design and implementation of the
corresponding multi-QoS transport architecture and protocols was done within the
framework of the EuQoS project.

	Enhanced Transport Protocols
	Introduction
	State of the Art of Transport Protocols
	TCP and UDP
	TCP Evolution
	TCP Tahoe
	TCP Reno
	TCP Vegas
	TCP New Reno
	TCP Variants for High-Throughput and Wireless Networks

	SCTP
	DCCP
	Discussion

	Transport Mechanisms
	Overview
	Congestion-Control Mechanisms
	Window-Based Congestion Control
	Rate-Based Congestion Control

	Reliability Mechanisms
	Automatic Repeat Request
	Flow Control

	Discussion

	Enhanced Transport Protocol Mechanisms
	TFRC and gTFRC, a QoS-Aware Congestion Control
	Application-Aware Transport Mechanisms
	Application Profile-Aware Congestion Control
	QoS-Aware Error Control Mechanism
	Partially Ordered Service (PO)
	Partially Reliable Service (PR)
	Partially Reliable, Differentiated and Time-Constrained ARQ (D-PR & TD-PR)

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

