613 research outputs found

    Constrained reconstruction of 3D curves and surfaces using integral spline operators

    Get PDF
    In the context of direct/reverse engineering processes one of the main problem is the reconstruction of curves and surfaces starting from a cloud of points. Most of the times the (re)constructed curves and surfaces have to satisfy some particular geometric constraints and functional properties related to the desired shapes. In this paper, referring to 3D curves and surfaces, we propose an algorithm based on an interpolatory variation diminishing integral spline operator characterized by the presence of shape parameters. In order to choose the best value for the shape parameters different functionals can be adopted. Some test cases are presented in order to show the effectiveness of the proposed algorithm: both academic and real world test cases are considered

    Breaking the core-envelope symmetry in p-mode pulsating stars

    Full text link
    It has been shown that there is a potential ambiguity in the asteroseismic determination of the location of internal structures in a pulsating star. We show how, in the case of high-order non-radial acoustic modes, it is possible to remove this ambiguity by considering modes of different degree. To support our conclusions we have investigated the seismic signatures of sharp density variations in the structure of quasi-homogeneous models.Comment: 3 pages, 3 figures, accepted for publication in Astronomy and Astrophysic

    Representation of dam-breach geometry on a regular 2-D mesh using quadtree local mesh refinement

    Get PDF
    River hydrodynamicsUnsteady open channel flow and dam brea

    CLES, Code Liegeois d'Evolution Stellaire

    Full text link
    Cles is an evolution code recently developed to produce stellar models meeting the specific requirements of studies in asteroseismology. It offers the users a lot of choices in the input physics they want in their models and its versatility allows them to tailor the code to their needs and implement easily new features. We describe the features implemented in the current version of the code and the techniques used to solve the equations of stellar structure and evolution. A brief account is given of the use of the program and of a solar calibration realized with it.Comment: Comments: 8 pages, Astrophys. Space Sci. CoRoT-ESTA Volume, in the pres

    Testing abundance-age relations beyond solar analogues with Kepler LEGACY stars

    Get PDF
    The prospects of using abundance ratios as stellar age indicators appear promising for solar analogues, but the usefulness of this technique for stars spanning a much wider parameter space remains to be established. We present abundances of 21 elements in a sample of 13 bright FG dwarfs drawn from the Kepler LEGACY sample to examine the applicability of the abundance-age relations to stars with properties strongly departing from solar. These stars have precise asteroseismic ages that can be compared to the abundance-based estimates. We analyse the well-known binary 16 Cyg AB for validation purposes and confirm the existence of a slight metal enhancement ( 3c0.02 dex) in the primary, which might arise from planetary formation and/or ingestion. We draw attention to systematic errors in some widely used catalogues of non-seismic parameters that may significantly bias asteroseismic inferences. In particular, we find evidence that the ASPCAP Teff scale used for the APOKASC catalogue is too cool for dwarfs and that the [Fe/H] values are underestimated by 3c0.1 dex. In addition, a new seismic analysis of the early F-type star KIC 9965715 relying on our spectroscopic constraints shows that the star is more massive and younger than previously thought. We compare seismic ages to those inferred from empirical abundance-age relations based on ages from PARSEC isochrones and abundances obtained in the framework of the HARPS-GTO programme. These calibrations depend on the stellar effective temperature, metallicity, and/or mass. We find that the seismic and abundance-based ages differ on average by 1.5-2 Gyr, while taking into account a dependency on one or two stellar parameters in the calibrations leads to a global improvement of up to 3c0.5 Gyr. However, even in that case we find that seismic ages are systematically larger by 3c0.7 Gyr. We argue that it may be ascribed to a variety of causes including the presence of small zero-point offsets between our abundances and those used to construct the calibrations or to the choice of the set of theoretical isochrones. The conclusions above are supported by the analysis of literature data for a larger number of Kepler targets. For this extended sample, we find that incorporating a Teff dependency largely corrects for the fact that the abundance-based ages are lower/larger with respect to the seismic estimates for the cooler/hotter stars. Although investigating age dating methods relying on abundance data is worth pursuing, we conclude that further work is needed to improve both their precision and accuracy for stars that are not solar analogues

    HD 174884: a strongly eccentric, short-period early-type binary system discovered by CoRoT

    Get PDF
    Accurate photometric CoRoT space observations of a secondary seismological target, HD 174884, led to the discovery that this star is an astrophysically important double-lined eclipsing spectroscopic binary in an eccentric orbit (e of about 0.3), unusual for its short (3.65705d) orbital period. The high eccentricity, coupled with the orientation of the binary orbit in space, explains the very unusual observed light curve with strongly unequal primary and secondary eclipses having the depth ratio of 1-to-100 in the CoRoT 'seismo' passband. Without the high accuracy of the CoRoT photometry, the secondary eclipse, 1.5 mmag deep, would have gone unnoticed. A spectroscopic follow-up program provided 45 high dispersion spectra. The analysis of the CoRoT light curve was performed with an adapted version of PHOEBE that supports CoRoT passbands. The final solution was obtained by simultaneous fitting of the light and the radial velocity curves. Individual star spectra were derived by spectrum disentangling. The uncertainties of the fit were derived by bootstrap resampling and the solution uniqueness was tested by heuristic scanning. The results provide a consistent picture of the system composed of two late B stars. The Fourier analysis of the light curve fit residuals yields two components, with orbital frequency multiples and an amplitude of about 0.1 mmag, which are tentatively interpreted as tidally induced pulsations. An extensive comparison with theoretical models is carried out by means of the Levenberg-Marquardt minimization technique and the discrepancy between models and the derived parameters is discussed. The best fitting models yield a young system age of 125 million years which is consistent with the eccentric orbit and synchronous component rotation at periastron.Comment: 15 pages, 12 figures. Accepted for publication by A&

    Seismic detection of acoustic sharp features in the CoRoT target HD49933

    Full text link
    The technique of determining the acoustic location of layers of sharp changes in the sound speed inside a star from the oscillatory signal in its frequencies is applied on a solar-type star, the CoRoT target, HD49933. We are able to determine the acoustic depth of the second helium ionisation zone of HD49933 to be 794 +55/-68 seconds. The acoustic depth of the base of the convective zone is found to be 1855 +173/-412 seconds where the large error bars reflect the ambiguity in the result, which is difficult to determine with present precision on the frequencies because of the intrinsically weak nature of the signal. The positions of both these layers are consistent with those in a representative stellar model of HD49933.Comment: Accepted for publication in Astronomy & Astrophysic

    Probable nonradial g-mode pulsation in early A-type stars

    Full text link
    A survey for line profile variability in early A-type stars has been performed in order to detect nonradial pulsation signatures. The star HR 6139, with spectral type A2V and estimated T_eff=8800 K, shows evident line profile variations that can be explained by oscillations in prograde g-modes. This feature and the known photometric variability are similar to those observed in the Slowly Pulsating B-type stars. However HR 6139 is much cooler than the cool border of the instability strip of such variables, and it is hotter than the blue edge of the delta Scuti instability strip. There are indications of a tiny variability also in other four objects, whose nature is not yet clear.Comment: 4 pages, 5 figures; accepted for publication in A&A (letter

    Wastewater treatment using artificial wetlands

    Get PDF
    In the study described in this paper, pilot scale vertical flow wetlands were evaluated as a potential wastewater treatment system for agricultural wastewater exiting from swine farm. The criteria used for evaluation were based on water quality requirements for irrigation
    • …
    corecore