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Franca Caliò1, Edie Miglio2

1Dipartimento di Matematica, Politecnico di Milano, Italy

2MOX - Dipartimento di Matematica, Politecnico di Milano, Italy

Communicated by Roberto Natalini

Abstract

In the context of direct/reverse engineering processes one of the main problem is
the reconstruction of curves and surfaces starting from a cloud of points. Most of the
times the (re)constructed curves and surfaces have to satisfy some particular geometric
constraints and functional properties related to the desired shapes.

In this paper, referring to 3D curves and surfaces, we propose an algorithm based
on an interpolatory variation diminishing integral spline operator characterized by the
presence of shape parameters. In order to choose the best value for the shape parameters
different functionals can be adopted.

Some test cases are presented in order to show the effectiveness of the proposed
algorithm: both academic and real world test cases are considered.

Keywords: surface and curve approximation, spline approximation,

functional minimization.

AMS subject classification: 65D10, 65D07, 65D17.

1. Introduction.

In the context of reverse modeling and/or creative design one of the
main problem is to (re)construct a virtual model of an object starting from a
cloud of points. This amounts to determine a suitable parametrization, only
depending on one or two parameters, of the required shape which follows
the given data and is “optimal” with respect to specific requirements given
by the designer. To this aim it is necessary to develop geometric models
and algorithms that automatically create shapes close as much as possible
to the given data and assuring at the same time a good representation of
the geometric and functional properties of the required virtual model.

In literature some methods for spatial curves have been proposed (see
for example [1–4]): these methods are based on the use of free form along
with a least square approach. The resulting (re)constructed curves are in
general shape preserving (see for example [5,6]), but not sufficiently flexible

Received on July 22nd, 2013. Accepted on December 11th, 2013. Published on December 12th, 2013.

Licensed under the Creative Commons Attribution Noncommercial No Derivatives.

http://www.ams.org/mathscinet/msc/msc2010.html
http://creativecommons.org/licenses/by-nc-nd/2.5/it/deed.en_GB


F. Caliò et al.

to ensure desired properties. Similar approaches based on tensor models are
used for surfaces (see for example [7–9]).

The alternative idea, that we present in this paper, is to reconstruct
a free form curve controlled by a set of points whose position is chosen
in order to preserve the shape and to satisfy geometrical properties of
(re)constructed curves imposed by designer. In [10] a similar approach has
been used for planar curve fairing. This idea is extended to surfaces as well.

The main ingredients of the proposed algorithm are:

• the observed points are considered as interpolation points;
• starting from the interpolation points the corresponding control

points are generated;
• a parameter λ is inserted in the definition of the control points;
• a suitable discrete functional is minimized in order to obtain the

optimal value of the parameter (λopt);
• λopt is used in the new optimal control point set.

This scheme is easily extended to surface as well. Finally the “optimal” free
form is defined and the curve or the surface is reconstructed: this recon-
structed surface satisfy the required properties.

Hence the key idea of the advocated method is to stick to an interpo-
lating approach but allowing to move the control points by means of the
“proper” determination of the value of the shape parameters. This proper
determination is linked to the choice of the functional to be minimized in
order to obtain the optimal value of the shape parameters. In the case of
curve most of the time the requirement is to obtain a smooth curve in
terms of curvature and torsion, with different weights of these requirements
on the shape of curve; as for surfaces a suitable curvature control is usually
required.

The paper is organized as follows: the first section summarizes the form
and properties of the particular spline operator with shape parameter used
in the free form (re)construction; in the second section the tensor exten-
sion of this operator is presented; the third section describes some possible
functionals both for curves and surfaces; the fourth section describes the
used algorithms and the fifth section presents some numerical examples.

2. Integral spline operator.

2.1. 3D curves.

In this section we briefly recall the main concepts about the so called
Variational Diminishing Integral Spline operator with shape parameter
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(λ-VDIS). For details see [11] and for an application in the reverse en-
gineering field see for example [10].

Given a set of control points CP, an integer number k and a knot vector
t = (ti)

m+1
i=−k, 0 = t−k = ... = t0 < t1 < ... < tp+1 = ... = tm+1 = 1, p =

m− k the operator λ-VDIS is defined as follows:

(1) (T λmCP)(u) = (1− λ)(SmCP)(u) + λ(TmCP)(u)

where

• λ is a real number (shape parameter) such that 0 ≤ λ ≤ 1;
• (SmCP)(u) = bTmk(u)CP 0 ≤ u ≤ 1 is the so called a k-degree

Variation Diminishing Spline (VDS) operator, where:

bmk = [Bk
0 (u), Bk

1 (u), ..., Bk
m(u)]T

and the basis functions Bk
i (u) (i = 0, 1, . . .m) are the classical

B-spline functions of degree k, on the knot vector t;
• (TmCP)(u) = bTmk(u)(MCP) 0 ≤ u ≤ 1 is called a k-degree

Variation Diminishing Integral Spline (see [11]) where

(2) M =


β0 γ0 0 ... 0
α1 β1 γ1 ... 0
0 α2 β2 ... 0
0 ... ... γm−1

0 ... ... αm βm


with

(3)

α0 = 0, αi =
(δli)

2

2∆k
i−1∆k+1

i

, i = 1, ...m

γi =
(δri )

2

2∆k
i ∆

k+1
i

, i = 0, ...,m− 1, γm = 0

βi = 1− αi − γi, i = 0, ...,m

(4)

∆k
i = ξki+1 − ξki ,

δri = ξk+1
i+1 − ξki , ξ

k+1
i < ξki < ξk+1

i+1

δli = ξki − ξ
k+1
i ,

and

(5) ξki =
ti−k+1 + ...+ ti

k
i = 0, . . . ,m.

are the so-called Schoenberg or corresponding points (see [12]).
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Alternatively (1) can be written as

(6) (T λmCP)(u) = (SmCQλ)(u)

where

(7) CQλ = (1− λ)CP + λMCP.

This operator shares the same geometrical properties of the VDS oper-
ator (see [13]). Precisely some of them:

• affine invariance;
• convex hull property;
• variation diminishing.

2.2. Surfaces.

Now we extend the previous concepts about λ-VDIS operator to the
field of splines depending on two parameters (u,w).

Let CP a set of (m+1)×(n+1) control points, h and k integer numbers
and
t = (ti)

m+1
i=−k, 0 = t−k = ... = t0 < t1 < ... < tp+1 = ... = tm+1 = 1, p =

m− k,
s = (si)

n+1
i=−h, 0 = s−h = ... = s0 < t1 < ... < sq+1 = ... = sn+1 = 1, q =

n− h.
The l−th component of bivariate tensor VDS operator can be expressed

in matrix form similarly to univariate case (see [13]):

(T λτmnCP)l(u,w) = (1− τ)(1− λ)(SmnCP)l + τ(1− λ)(SmnCQτ )l(8)

+ λ(1− τ)(SmnCQλ)l + λτ(SmnCQλτ )l

with l = 1, 2, 3 and where

• λ and τ are real numbers (shape parameters) such that 0 ≤ λ, τ ≤ 1;
• (SmnCP)(u,w)l = bTmk(u)(CP)lbnh(w) 0 ≤ u ≤ 1, 0 ≤ w ≤ 1;
• bmk = [Bk

0 (u), Bk
1 (u), ..., Bk

m(u)]T and
bnh = [Bh

0 (w), Bh
1 (w), ..., Bh

n(w)]T .

The basis functions Bk
i (u) (i = 0, 1, . . . ,m) are the classical

B-spline functions of degree k built on the set of knots t and the basis
functions Bh

j (w) (j = 0, 1, . . . , n) are the classical B-spline functions
of degree h built on the set of knots s

• (CQλ)l =M(CP)l;
• (CQτ )l = N (CP)l;
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• (CQλτ )l =M(CP)lN ;

where M is the matrix defined in (2) and N is the analogous matrix built
upon the knot vector s.

Alternatively (8) can be written as:

(9) T λτmn(CP)l(u,w) = Smn(CP)λτl (u,w)

where:

(CP)λτl = (1− τ)(1− λ)(CP)l + τ(1− λ)N (CP)l(10)

+ λ(1− τ)M(CP)l + λτM(CP)lN

Also in this case some interesting geometrical properties hold. We exper-
imentally can show the analogous properties of the curves. We are working
about these theoretical results.

3. Adopted functionals.

Before describing in details the approximating procedure we will discuss
some functionals that can be used in order to achieve different aims. A
discussion on the meaning of different functionals can be found in [14–16].

From the mathematical point of view different results can be obtained
using different functionals involving curve properties.

3.1. 3D curve functionals.

In Table 1 some possible functionals and their properties are presented;
κ(t), ρ(t) and τ(t) are the curvature, the radius of curvature and the torsion
and are defined as follows:

(11) κ(t) =
‖c′ ∧ c′′‖
‖c′‖3

,

(12) ρ(t) = κ(t)−1,

and

(13) τ(t) =
(c′ ∧ c′′ · c′′′)
‖c′ ∧ c′′‖2

where c(t) is the parametric representation of the curve, the ′ denotes the
derivative with respect to the parameter t and ∧ is the vector product.
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Table 1. Different functionals.

Functional R2 R3∫
[ρ2τ2 + (ρ′)2]

1
2 ds smooths smooths and rounds∫

[κ2τ2 + (κ′)2]
1
2 ds smooths smooths and flattens∫

[κ2 + τ2]
1
2 ds straightens flattens∫

(τ ′′(s))2 + (κ′′(s))2ds smooths smooths and rounds

3.2. Surface functionals.

As for the curves we introduce some metrics which are used to measure
the smoothness of the surface at interest. These metrics must depend only
on invariants such that a reparametrization of the surface does not affect
the value of the measure. Let K and H be the Gaussian and the mean cur-
vatures of the surface and n the normal vector to the surface; the following
three derived surfaces are considered as metrics:

1. the flattening metric which is the surface area of the derived surface

(14) d(u,w) = K(u,w)n(u,w).

This metric tends to minimize the magnitude of the Gaussian curvature
K and extreme changes in the Gaussian curvature along the lines of
curvature: the tendency is to flatten the surface.

2. the rounding metric which is the surface area of the derived surface

(15) d(u,w) = r(u,w) + [H(u,w)/K(u,w)]n(u,w).

This metric tends to pull the surface towards a sphere.
3. the rolling metric which is the surface area of the derived surface

(16) d(u,w) = [K(u,w) +H2(u,w)]n(u,w).

This metric tends to make the surface more cylindrical or conical.

The functionals used in the algorithm we are proposing are obtained
computing the surface area A of the above mentioned derived surface i.e.

(17) A =

∫
R

∣∣∣∣∂d∂u ∧ ∂d∂w
∣∣∣∣ dudw,

where R is the parameter domain of r(u,w).

6



DOI: 10.1685/journal.caim.461

3.3. Discrete curvatures and discrete torsion.

In the problems we are going to consider the curve will be defined by
points hence it is necessary to be able to compute the curvature and the
torsion starting from a discrete set of points defining the curve (see for
example [17,18]). To this aim let us consider Figure 1.

A simple formula to approximate the curvature is as follows:

(18) K(ti) =
2Ai

LiLi+1Qi

where Ai, Li, Qi are defined as follows (rhi denotes the discrete representa-
tion of the curve):

Li = rhi − rhi−1 , Li = ‖Li‖ ,
Qi = rhi+1 − rhi−1 , Qi = ‖Qi‖ ,
Ai = ‖Li ∧ Li+1‖ = ‖Li ∧Qi‖ = ‖Li+1 ∧Qi‖.

(19)

ri−2

ri−1

ri

ri+1

ri+2

Li

Li+1

Qi

1
Ki

Ai

Figure 1. Notations for the computation of the discrete curvature and the discrete tor-
sion.

Similarly the following formula for the discrete torsion can be obtained

(20) T (ti) =
Vi

BiBi+1

where:

Vi = (Li−1 ∧ Li · Li+1)

Bi = Li ∧ Li+1 , Bi = ‖Bi‖.
(21)

A more useful centered approximation (with respect to ti) of the discrete
torsion can also be derived:

(22) T sym(ti) =
LiTi+1 + Li+1Ti

Li + Li+1
.
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As for the surfaces we have to compute the discrete Gaussian and mean
curvatures. Suppose to have a scattered cloud of point in the space defining
the surface we want to (re)construct. The first step is to build a 3D Voronoi
diagram of the points such that for each point we can define the quantities
shown in Figure 2.

Figure 2. Notations used in the definition of the discrete curvatures for a surface.

Now we can compute the mean curvature normal operator K (see [19,
20]) using the following expression:

(23) K(xi) =
1

2Ap

∑
j∈N(i)

(cotαij + cotβij)(xi − xj),

where Ap is a suitable area surrounding point xi and can be chosen in
different ways (see [20]), N(i) is the set of 1-ring neighbor vertices of vertex
i and αij and βij are defined in Figure 2. The mean curvature H can be
easily computed

(24) H(xi) =
1

2
‖K(xi)‖.

Moreover the normal vector is computed normalizing K(xi).
As for the Gaussian curvature G the following expression can be used:

(25) G(xi) =

2π −
Nf∑
j=1

θj

 /Ap

where Nf is the number of faces around vertex i.
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Finally the principal curvature can be estimated starting from G and
H as follows:

(26) K1,2(xi) = H(xi)±
√

∆(xi),

where ∆(xi) = H2(xi)−G(xi).

4. Constrained reconstruction procedure.

4.1. Algorithm for spatial curves.

The algorithm we are advocating can be summarized as follows:

1. Given a set of m + 1 measured points Pi the algorithm computes a set
of m+ 1 control points CPi defining an interpolating B-spline curve of
degree k. The parametric equation of the curve is:

(27) Sm(u) =
m∑
i=0

Bk
i (u)CPi.

Precisely once a suitable parametrization (centripetal, uniform, chordal,
...) of the given data is chosen, each uj corresponds to a data point Pj .
In our tests we have used the centripetal parametrization.
The values in the knot vector can be arbitrary chosen or they can be
linked to the values of the parameter. In particular in our case we have
chosen the following parameter averaging strategy [12]:

(28)

t−k = . . . = t0 = 0,

tj+k = 1
k

∑j+k−1
i=j ui, j = 1, . . . , n+ 1,

tn+1 = . . . = tm+1 = 0,

where n = m− k.
We can write the interpolation conditions as follows

(29) Pj = Sm(uj) =
m∑
i=0

Bk
i (uj)CPi j = 0, . . . ,m.

Introducing the B-spline collocation matrix B, whose elements are bji =
Bk
i (uj), we can rewrite equation (29) in the following matrix notation

(30) P = BCP

which is a linear system in the unknown vector CP.
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2. Using the knot vector t, the control point vector CP, the Schoenberg
point computed according to (5) and the matrixM computed using for-
mula (2) we can write formally the curve T λmCP = Sm((1 − λ)CP +
λMCP). From the practical point of view this amounts to apply equa-
tion (7).

3. The chosen (discrete) functional is written in terms of CQλ; the mini-
mization of this functional gives λopt (by means of the Matlab command
fminsearch).

4. Taking into account expression (7) the final curve is constructed using
the following control points:

(31) CPλopt = (1− λopt)CP+λoptMCP

4.2. Algorithm for surfaces.

We extend the previous algorithm to the bivariate spline case and in
the following we summarize it.

1. Let suppose we have (m + 1)(n + 1) data points Pij i = 0, 1, ...,m,
j = 0, 1, ..., n on the surface, first the algorithm computes a set of (m+
1)(n+1) control points CP defining an interpolating tensor (degrees k, h)
B-spline surface. Let us organize the set CP into n + 1 sets of m + 1
elements each, i.e. CPij i = 0, 1, ...,m, j = 0, 1, ..., n, where CPij are
three-dimensional vectors, whose components are the coordinates of the
control points. The parametric equation of the curve is:

(32) Smn(u,w) =
m∑
i=0

n∑
j=0

Bk
j (w)CPijB

h
i (u).

Precisely once a suitable parametrization of the given data is chosen,
each uc and wd (c = 0, 1, ...,m d = 0, 1, ..., n) corresponds to a data
point Pij . In our tests we have used the centripetal parametrization for
both parameters.
The values in the knot vectors t and s can be arbitrary chosen or they
can be linked to the values of the parameters. In particular in our case
we have chosen the parameters analogously to the univariate case.
Plugging u = uc, w = wd in (32) we can write the interpolation condi-
tions as follows:

(Pcd)l = (Smn(uc, wd))l

=

m∑
i=0

(

n∑
j=0

Bk
j (wd)(CPij)l)B

h
i (uc) d = 0, 1, . . . n; c = 0, 1, . . . ,m.(33)
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In (32) we can assume the surface swept by a curve spline family whose
control points are on a curve spline family.
Introducing the B-spline collocation matrices B and D, whose elements
are respectively bci = Bk

i (uc) and djd = Bh
j (wd) we can rewrite equa-

tion (33) in the following matrix notation

(34) (Pcd)l = B(CP)lD

Starting from (33):

• we solve n + 1 linear systems to determine n + 1 sets of l − th
components of m + 1 points CQ0d,CQ1d, ...,CQmd as control
points of spline curves sweeping the approximating surface. Pre-
cisely Smn(uc, wd)l =

∑m
i=0(CQid)lB

h
i (uc) as c = 0, 1, ...,m;

• we solve linear m + 1 systems to determine m + 1 set of l − th
components of n+1 points CQc0,CQc1, ...,CQcn, as control points
of spline curve giving the control points to sweeping curves.
As suggested in literature the solution of each systems is carried
out by the LU decomposition.

Using the knot vector t, s the control points CP, the Schoenberg points
computed according to (5) respectively on the sets t and s and the
matrixM and N computed adapting formula (2) we can write formally
the surface as (8). From the practical point of view this amounts to apply
equation (10).

2. The chosen (discrete) functional is written in terms of CPλτ
l ; the mini-

mization of this functional gives λopt and τopt (by means of the Matlab
command fminsearch).

3. Taking into account expression (10) the final surface is constructed using
the following control points:

(CP)
λoptτopt
l = (1− τopt)(1− λopt)(CP)l + τopt(1− λopt)N (CP)l

+ λopt(1− τopt)M(CP)l + λoptτoptM(CP)lN(35)

5. Numerical results.

In this section we are going to present some results concerning (academic
and real world) test cases in order to asses the effectiveness of the proposed
method for (re)constructing curves and surfaces from scattered data.
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5.1. Test 1: analytical curve.

In the first test case we consider an analytical curve, namely a conical
helix whose equation is:

(36) c(t) =

[
(3π + t) cos(t)

3π
,
(3π + t) sin(t)

3π
,
t

π

]T
, t ∈ [0, 6π].

We took 100 samples from this curve and we have used quintic B-splines
for the reconstruction procedure.

The aim of this test is to show the differences obtained in the recon-
struction procedure using

• simple interpolation;
• least square approximation;
• constrained interpolation smoothing technique proposed in this paper.

These techniques are evaluated on different data sets characterized by
a different number of samples (15 for the small set and 100 for the big one)
and different noise. In particular three perturbations have been considered:

• “high noise”: gaussian noise with zero average and variance equal to 0.1;
• “low noise”: gaussian noise with zero average and variance equal to 0.01;
• “scattered noise”: only 10 samples are affected by the noise: these sam-

ples are scattered along the curve and the amplitude of the noise is 0.1.

Table 2. Values of
∫

(ρex − ρ)2ds. LS = Least
Squares, CI = Constrained Interpolation, I = In-
terpolation.

Test LS CI I

Small set - High noise 2.13 1.75 19.32
Big Set - Low noise 1.44 0.91 13.11

Big Set - Scattered noise 0.72 0.55 12.27

According to the results shown in the previous table we can conclude
that in general the normal interpolation does not perform very well. More
in detail: if the number of sample is small and the sample are characterized
by a significant noise then the least squares results are comparable to the
ones obtained by the constrained smoothing. The method advocated in this
paper is particularly suitable when there are a lot of samples and only a
small number of them is affected by the noise.

In this test we have considered the first functional given in Table 1.

12
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5.2. Test 2: titanium heat data.

In this second test we consider the classical dataset concerning the ti-
tanium heat data introduced by De Boor. In this case we have used the
second functional given in Table 1. In Figure 3 the result of the reconstruc-
tion along with the original data is reported.

Figure 3. Reconstruction of the titanium heat data.

5.3. Test 3: real curve.

In the third test case we considered a data set coming from a measure-
ment of a sole profile collected with the aim of creating a virtual prototype
of the shoe in order to easily build models of different shoe’s size. Figure 4
shows the 174 measured points obtained using a Coordinate Measuring
Machine (CMM).

The advocated method has been applied for the reconstruction of the
shoe’s profile: in particular quintic B-spline have been adopted and the first
functional in Table 1 has been used.

In Figure 5 the control points obtained applying the proposed method
are shown: it is possible to see some oscillations in the position of these
points inducing unexpected changes in the curvature. The use of different
functionals in different parts of the curve (in order to satisfy different shape

13
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constraints) can solve this problem creating a smoother curve. In Figure 6
the curve reconstructed using different functionals is shown.

The choice of the functionals must be done a-priori but it can be guided
by a first (re)construction of the curve using classical approaches.

Figure 4. Measured points for the shoe’s profile.

5.4. Test 4: equation of state aluminium data.

In this case we consider the dataset presented [21] concerning the equa-
tion of state of the aluminium. This dataset is quite difficult to approximate.
For this case we have considered the rounding metric. Figure 7 shows the
original dataset and in Figure 8 the result obtained using the procedure
advocated in this paper is reported. The result is satisfactory even if some
improvements could be obtained using (as in the previous test case) different
functionals in different part of the surface or using more shape parameters
to have a stronger control on the resulting shape of the surface (both these
approaches are under investigation and they will be the subject of a future
paper).

14



DOI: 10.1685/journal.caim.461

Figure 5. Control points obtained using the proposed approach and the first functional
in Table 1.

Figure 6. Reconstructed curve using different functionals in different parts.

5.5. Test 5: analytical surface.

The following analytical surface is considered

(37)

 x(t, s) = cos(t+ s) +
√
|t|

y(t, s) = 2t+ 3s+ ts+ 0.1ε
z(t, s) = sin(t) + s3 + ts+ 0.1ε

15
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Figure 7. Dataset for the equation of state of the aluminium.

Figure 8. Reconstructed surface for the equation of state of the aluminium.

where ε is a uniform random noise. A grid of 20 × 20 samples is consid-
ered. For the reconstruction quintic splines are used for describing both
the sweeping curves and the ones giving the control points (to the sweeping
curves). The flattening metric (14) has been used for defining the functional.
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Figure 9. Analytical surface with noise (left) and reconstructed surface (right).

The results are shown in Figure 9.

5.6. Test 6: real surface.

The shape of an aeronautical panel must be acquired, prior its submis-
sion to a crash test; a coordinate measuring machine (see Figure 10) is used
in order to sample the surface: in particular 59 × 68 x − y-grid of points
has been acquired (see Figure 11). The panel is a slightly bended cylin-
drical surface, with evenly-distributed irregularities (rivets): the aim is to
reconstruct the surface filtering out the presence of the rivets.

The flattening metric (14) has been used for defining the functional.
Quintic splines are used for both spline classes in the tensor expression (see
equation (33)). In Figure 12 a classical reconstruction is shown while in
Figure 13 the result of the proposed method is presented.

6. Conclusions.

In this paper we have presented a method to optimally reconstruct 3D
curves and surfaces. The specific features of the method are related to
the use of a particular class of integral spline operator characterized by
the presence of shape parameters. Moreover in order to satisfy particular
requirements (i.e. shape constraints) the user can define a properly chosen
functionals (related to the desired results) depending on parameters; the
minimization of functionals leads to the optimal behavior of curve and
surfaces. The approach we have presented is very flexible since it is quite
easy and cheap to use splines of high degree if necessary (whereas most of
the classical methods uses splines of degree 3).

Some results on academic (taken also from existing literature for com-
parison) and real-world cases show the effectiveness of the proposed algo-
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Figure 10. CMM Measuring Machine.

Figure 11. Acquired points.

rithm.
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