309 research outputs found

    3D printing of optical materials: an investigation of the microscopic properties

    Get PDF
    3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.Comment: 8 pages, 3 figure

    MAC for Networks with Multipacket Reception Capability and Spatially Distributed Nodes

    Get PDF

    Impact of size effects on photopolymerization and its optical monitoring in-situ

    Get PDF
    Photopolymerization processes are exploited in light exposure-based 3D printing technologies, where either a focused laser beam or a patterned light sheet allows layers of a UV curable, liquid pre-polymer to be solidified. Here we focus on the crucial, though often neglected, role of the layer thickness on photopolymerization. The temporal evolution of polymerization reactions occurring in droplets of acrylate-based oligomers and in photoresist films with varied thickness is investigated by means of an optical system, which is specifically designed for in-situ and real-time monitoring. The time needed for complete curing is found to increase as the polymerization volume is decreased below a characteristic threshold that depends on the specific reaction pathway. This behavior is rationalized by modeling the process through a size-dependent polymerization rate. Our study highlights that the formation of photopolymerized networks might be affected by the involved volumes regardless of the specific curing mechanisms, which could play a crucial role in optimizing photocuring-based additive manufacturing

    Neurosurgical Applications of Magnetic Resonance Diffusion Tensor Imaging

    Get PDF
    Magnetic Resonance (MR) Diffusion Tensor Imaging (DTI) is a rapidly evolving technology that enables the visualization of neural fiber bundles, or white matter (WM) tracts. There are numerous neurosurgical applications for MR DTI including: (1) Tumor grading and staging; (2) Pre-surgical planning (determination of resectability, determination of surgical approach, identification of WM tracts at risk); (3) Intraoperative navigation (tumor resection that spares WM damage, epilepsy resection that spares WM damage, accurate location of deep brain stimulation structures); (4) Post-operative assessment and monitoring (identification of WM damage, identification of tumor recurrence). Limitations of MR DTI include difficulty tracking small and crossing WM tracts, lack of standardized data acquisition and post-processing techniques, and practical equipment, software, and timing considerations. Overall, MR DTI is a useful tool for planning, performing, and following neurosurgical procedures, and has the potential to significantly improve patient care. Technological improvements and increased familiarity with DTI among clinicians are next steps

    Mechanics of Hydrogenated Amorphous Carbon Deposits from Electron-Beam-Induced Deposition of Paraffin Precursor

    Get PDF
    Many experiments on the mechanics of nanostructures require the creation of rigid clamps at specific locations. In this work, electron-beam-induced deposition(EBID) has been used to depositcarbonfilms that are similar to those that have recently been used for clamping nanostructures. The film deposition rate was accelerated by placing a paraffin source of hydrocarbon near the area where the EBIDdeposits were made. High-resolution transmission electron microscopy, electron-energy-loss spectroscopy, Raman spectroscopy, secondary-ion-mass spectrometry, and nanoindentation were used to characterize the chemical composition and the mechanics of the carbonaceous deposits. The typical EBIDdeposit was found to be hydrogenated amorphous carbon (a-C:H) having more sp2- than sp3-bonded carbon.Nanoindentation tests revealed a hardness of ∌4GPa and an elastic modulus of 30–60GPa, depending on the accelerating voltage. This reflects a relatively soft film, which is built out of precursor molecular ions impacting the growing surface layer with low energies. The use of such deposits as clamps for tensile tests of poly(acrylonitrile)-based carbon nanofibers loaded between opposing atomic force microscope cantilevers is presented as an example applicatio

    Enhanced Electrospinning of Active Organic Fibers by Plasma Treatment on Conjugated Polymer Solutions

    Get PDF
    Realizing active, light-emitting fibers made of conjugated polymers by the electrospinning method is generally challenging. Electrospinning of plasma-treated conjugated polymer solutions is here developed for the production of light-emitting microfibers and nanofibers. Active fibers from conjugated polymer solutions rapidly processed by a cold atmospheric argon plasma are electrospun in an effective way, and they show a smoother surface and bead-less morphology, as well as preserved optical properties in terms of absorption, emission, and photoluminescence quantum yield. In addition, the polarization of emitted light and more notably photon waveguiding along the length of individual fibers are remarkably enhanced by electrospinning plasma-treated solutions. These properties come from a synergetic combination of favorable intermolecular coupling in the solutions, increased order of macromolecules on the nanoscale, and resulting fiber morphology. Such findings make the coupling of the electrospinning method and cold atmospheric plasma processing on conjugated polymer solutions a highly promising and possibly general route to generate light-emitting and conductive micro- and nanostructures for organic photonics and electronics

    The role of parental achievement goals in predicting autonomy-supportive and controlling parenting

    Get PDF
    Although autonomy-supportive and controlling parenting are linked to numerous positive and negative child outcomes respectively, fewer studies have focused on their determinants. Drawing on achievement goal theory and self-determination theory, we propose that parental achievement goals (i.e., achievement goals that parents have for their children) can be mastery, performance-approach or performance-avoidance oriented and that types of goals predict mothers' tendency to adopt autonomy-supportive and controlling behaviors. A total of 67 mothers (aged 30-53 years) reported their goals for their adolescent (aged 13-16 years; 19.4 % girls), while their adolescent evaluated their mothers' behaviors. Hierarchical regression analyses showed that parental performance-approach goals predict more controlling parenting and prevent acknowledgement of feelings, one autonomy-supportive behavior. In addition, mothers who have mastery goals and who endorse performance-avoidance goals are less likely to use guilt-inducing criticisms. These findings were observed while controlling for the effect of maternal anxiety

    Multi-response analysis in the material characterisation of electrospun poly (lactic acid)/halloysite nanotube composite fibres based on Taguchi design of experiments: fibre diameter, non-intercalation and nucleation effects

    Get PDF
    Poly (lactic acid) (PLA)/halloysite nanotube (HNT) composite fibres were prepared by using a simple and versatile electrospinning technique. The systematic approach via Taguchi design of experiments (DoE) was implemented to investigate factorial effects of applied voltage, feed rate of solution, collector distance and HNT concentration on the fibre diameter, HNT non-intercalation and nucleation effects. The HNT intercalation level, composite fibre morphology, their associated fibre diameter and thermal properties were evaluated by means of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), imaging analysis and differential scanning calorimetry (DSC), respectively. HNT non-intercalation phenomenon appears to be manifested as reflected by the minimal shift of XRD peaks for all electrospun PLA/HNT composite fibres. The smaller-fibre-diameter characteristic was found to be sequentially associated with the feed rate of solution, collector distance and applied voltage. The glass transition temperature (T g) and melting temperature (T m) are not highly affected by varying the material and electrospinning parameters. However, as the indicator of the nucleation effect, the crystallisation temperature (T c) of PLA/HNT composite fibres is predominantly impacted by HNT concentration and applied voltage. It is evident that HNT’s nucleating agent role is confirmed when embedded with HNTs to accelerate the cold crystallisation of composite fibres. Taguchi DoE method has been found to be an effective approach to statistically optimise critical parameters used in electrospinning in order to effectively tailor the resulting physical features and thermal properties of PLA/HNT composite fibres

    Mechanical Properties of Glassy Polyethylene Nanofibers via Molecular Dynamics Simulations

    Get PDF
    The extent to which the intrinsic mechanical properties of polymer fibers depend on physical size has been a matter of dispute that is relevant to most nanofiber applications. Here, we report the elastic and plastic properties determined from molecular dynamics simulations of amorphous, glassy polymer nanofibers with diameter ranging from 3.7 to 17.7 nm. We find that, for a given temperature, the Young’s elastic modulus E decreases with fiber radius and can be as much as 52% lower than that of the corresponding bulk material. Poisson’s ratio Îœ of the polymer comprising these nanofibers was found to decrease from a value of 0.3 to 0.1 with decreasing fiber radius. Our findings also indicate that a small but finite stress exists on the simulated nanofibers prior to elongation, attributable to surface tension. When strained uniaxially up to a tensile strain of Δ = 0.2 over the range of strain rates and temperatures considered, the nanofibers exhibit a yield stress σy between 40 and 72 MPa, which is not strongly dependent on fiber radius; this yield stress is approximately half that of the same polyethylene simulated in the amorphous bulk.DuPont MIT AllianceDuPont (Firm) (Young Professor Award
    • 

    corecore