3D printing technologies are currently enabling the fabrication of objects
with complex architectures and tailored properties. In such framework, the
production of 3D optical structures, which are typically based on optical
transparent matrices, optionally doped with active molecular compounds and
nanoparticles, is still limited by the poor uniformity of the printed
structures. Both bulk inhomogeneities and surface roughness of the printed
structures can negatively affect the propagation of light in 3D printed optical
components. Here we investigate photopolymerization-based printing processes by
laser confocal microscopy. The experimental method we developed allows the
printing process to be investigated in-situ, with microscale spatial
resolution, and in real-time. The modelling of the photo-polymerization
kinetics allows the different polymerization regimes to be investigated and the
influence of process variables to be rationalized. In addition, the origin of
the factors limiting light propagation in printed materials are rationalized,
with the aim of envisaging effective experimental strategies to improve optical
properties of printed materials.Comment: 8 pages, 3 figure