526 research outputs found

    Activation of the Pathogen-Inducible Gst1 Promoter of Potato after Elicitation by Venturia inaequalis and Erwinia amylovora in Transgenic Apple ( Malus × Domestica )

    Get PDF
    Rather than using a constitutive promoter to drive transgenes for resistance against fungal and bacterial diseases in genetic engineering of apple (Malus × domestica) cultivars, a promoter induced only after infection was preferred. The ability of the Pgst1 promoter from potato (Solanum tuberosum L.) to drive expression of the gusA reporter gene was determined in two genotypes of apple: the fruit cultivar Royal Gala and the M.26 rootstock. β-glucuronidase activity in the transgenic lines grown in a growth chamber was determined quantitatively using fluorometric assays and compared to the activity in Cauliflower Mosaic Virus (CaMV) 35S promoter-driven transgenic lines. In both apple genotypes, the Pgst1 promoter exhibited a low level of expression after bacterial and fungal inoculation compared to the level obtained with the PCaMV35S promoter (15% and 8% respectively). The Pgst1 promoter was systematically activated in apple at the site of infection with a fungal pathogen. It was also activated after treatment with salicylic acid, but not after wounding. Taken together, these data show that, although the Pgst1 promoter is less active than the PCaMV35S promoter in apple, its pathogen responsiveness could be useful in driving the expression of transgenes to promote bacterial and fungal disease resistanc

    Low genetic diversity in Polish populations of sibling ant species: Lasius niger (L.) and Lasius platythorax Seifert (Hymenoptera, Formicidae)

    Get PDF
    We present preliminary data on mitochondrial DNA diversity within and among populations of the ants Lasius niger and Lasius platythorax in Poland. Phylogenetic analysis based on the mitochondrial DNA markers: cytochrome c oxidase subunit I (cox1) and 16S ribosomal RNA (16S rRNA) confirms the species status of L. niger and L. platythorax. Intraspecific variability is low in both species, which might be a result of severe bottlenecks and rapid postglacial expansion into Central Europe

    Epigenetic Regulation of Histone H3 Serine 10 Phosphorylation Status by HCF-1 Proteins in C. elegans and Mammalian Cells

    Get PDF
    BACKGROUND: The human herpes simplex virus (HSV) host cell factor HCF-1 is a transcriptional coregulator that associates with both histone methyl- and acetyltransferases, and a histone deacetylase and regulates cell proliferation and division. In HSV-infected cells, HCF-1 associates with the viral protein VP16 to promote formation of a multiprotein-DNA transcriptional activator complex. The ability of HCF proteins to stabilize this VP16-induced complex has been conserved in diverse animal species including Drosophila melanogaster and Caenorhabditis elegans suggesting that VP16 targets a conserved cellular function of HCF-1. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of HCF proteins in animal development, we have characterized the effects of loss of the HCF-1 homolog in C. elegans, called Ce HCF-1. Two large hcf-1 deletion mutants (pk924 and ok559) are viable but display reduced fertility. Loss of Ce HCF-1 protein at reduced temperatures (e.g., 12 degrees C), however, leads to a high incidence of embryonic lethality and early embryonic mitotic and cytokinetic defects reminiscent of mammalian cell-division defects upon loss of HCF-1 function. Even when viable, however, at normal temperature, mutant embryos display reduced levels of phospho-histone H3 serine 10 (H3S10P), a modification implicated in both transcriptional and mitotic regulation. Mammalian cells with defective HCF-1 also display defects in mitotic H3S10P status. CONCLUSIONS/SIGNIFICANCE: These results suggest that HCF-1 proteins possess conserved roles in the regulation of cell division and mitotic histone phosphorylation

    Loss of Extreme Long-Range Enhancers in Human Neural Crest Drives a Craniofacial Disorder

    Get PDF
    Non-coding mutations at the far end of a large gene desert surrounding the SOX9 gene result in a human craniofacial disorder called Pierre Robin sequence (PRS). Leveraging a human stem cell differentiation model, we identify two clusters of enhancers within the PRS-associated region that regulate SOX9 expression during a restricted window of facial progenitor development at distances up to 1.45 Mb. Enhancers within the 1.45 Mb cluster exhibit highly synergistic activity that is dependent on the Coordinator motif. Using mouse models, we demonstrate that PRS phenotypic specificity arises from the convergence of two mechanisms: confinement of Sox9 dosage perturbation to developing facial structures through context-specific enhancer activity and heightened sensitivity of the lower jaw to Sox9 expression reduction. Overall, we characterize the longest-range human enhancers involved in congenital malformations, directly demonstrate that PRS is an enhanceropathy, and illustrate how small changes in gene expression can lead to morphological variation

    The double PHD finger domain of MOZ/MYST3 induces α-helical structure of the histone H3 tail to facilitate acetylation and methylation sampling and modification

    Get PDF
    Histone tail modifications control many nuclear processes by dictating the dynamic exchange of regulatory proteins on chromatin. Here we report novel insights into histone H3 tail structure in complex with the double PHD finger (DPF) of the lysine acetyltransferase MOZ/MYST3/KAT6A. In addition to sampling H3 and H4 modification status, we show that the DPF cooperates with the MYST domain to promote H3K9 and H3K14 acetylation, although not if H3K4 is trimethylated. Four crystal structures of an extended DPF alone and in complex with unmodified or acetylated forms of the H3 tail reveal the molecular basis of crosstalk between H3K4me3 and H3K14ac. We show for the first time that MOZ DPF induces α-helical conformation of H3K4-T11, revealing a unique mode of H3 recognition. The helical structure facilitates sampling of H3K4 methylation status, and proffers H3K9 and other residues for modification. Additionally, we show that a conserved double glycine hinge flanking the H3 tail helix is required for a conformational change enabling docking of H3K14ac with the DPF. In summary, our data provide the first observations of extensive helical structure in a histone tail, revealing the inherent ability of the H3 tail to adopt alternate conformations in complex with chromatin regulators

    Lack of Effect of Sleep Apnea on Oxidative Stress in Obstructive Sleep Apnea Syndrome (OSAS) Patients

    Get PDF
    PURPOSE: The aim of this study was to evaluate markers of systemic oxidative stress and antioxidant capacity in subjects with and without OSAS in order to investigate the most important factors that determine the oxidant-antioxidant status. METHODS: A total of 66 subjects referred to our Sleep laboratory were examined by full polysomnography. Oxidative stress and antioxidant activity were assessed by measurement of the derivatives of reactive oxygen metabolites (d-ROMs) and the biological antioxidant capacity (BAP) in blood samples taken in the morning after the sleep study. Known risk factors for oxidative stress, such as age, sex, obesity, smoking, hypelipidemia, and hypertension, were investigated as possible confounding factors. RESULTS: 42 patients with OSAS (Apnea-Hypopnea index >15 events/hour) were compared with 24 controls (AHI<5). The levels of d-ROMS were significantly higher (p = 0.005) in the control group but the levels of antioxidant capacity were significantly lower (p = 0.004) in OSAS patients. The most important factors predicting the variance of oxidative stress were obesity, smoking habit, and sex. Parameters of sleep apnea severity were not associated with oxidative stress. Minimal oxygen desaturation and smoking habit were the most important predicting factors of BAP levels. CONCLUSION: Obesity, smoking, and sex are the most important determinants of oxidative stress in OSAS subjects. Sleep apnea might enhance oxidative stress by the reduction of antioxidant capacity of blood due to nocturnal hypoxia

    Crystal structure and mechanism of human lysine-specific demethylase-1

    Get PDF
    The reversible methylation of specific lysine residues in histone tails is crucial in epigenetic gene regulation. LSD1, the first known lysine-specific demethylase, selectively removes monomethyl and dimethyl, but not trimethyl modifications of Lys4 or Lys9 of histone-3. Here, we present the crystal structure of LSD1 at 2.9-Å resolution. LSD1 forms a highly asymmetric, closely packed domain structure from which a long helical 'tower' domain protrudes. The active site cavity is spacious enough to accommodate several residues of the histone tail substrate, but does not appear capable of recognizing the different methylation states of the substrate lysine. This supports the hypothesis that trimethylated lysine is chemically rather than sterically discriminated. We present a biochemical analysis of LSD1 mutants that identifies crucial residues in the active site cavity and shows the importance of the SWIRM and tower domains for catalysis

    Performance and long-term stability of the barley hordothionin gene in multiple transgenic apple lines

    Get PDF
    Introduction of sustainable scab resistance in elite apple cultivars is of high importance for apple cultivation when aiming at reducing the use of chemical crop protectants. Genetic modification (GM) allows the rapid introduction of resistance genes directly into high quality apple cultivars. Resistance genes can be derived from apple itself but genetic modification also opens up the possibility to use other, non-host resistance genes. A prerequisite for application is the long-term performance and stability of the gene annex trait in the field. For this study, we produced and selected a series of transgenic apple lines of two cultivars, i.e. ‘Elstar’ and ‘Gala’ in which the barley hordothionin gene (hth) was introduced. After multiplication, the GM hth-lines, non-GM susceptible and resistant controls and GM non-hth controls were planted in a random block design in a field trial in 40 replicates. Scab resistance was monitored after artificial inoculation (first year) and after natural infection (subsequent years). After the trial period, the level of expression of the hth gene was checked by quantitative RT-PCR. Four of the six GM hth apple lines proved to be significantly less susceptible to apple scab and this trait was found to be stable for the entire 4-year period. Hth expression at the mRNA level was also stable
    corecore