484 research outputs found

    Helical Chirality: a Link between Local Interactions and Global Topology in DNA

    Get PDF
    DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology

    Delayed Treatment with Systemic (S)-Roscovitine Provides Neuroprotection and Inhibits In Vivo CDK5 Activity Increase in Animal Stroke Models

    Get PDF
    Although quite challenging, neuroprotective therapies in ischemic stroke remain an interesting strategy to counter mechanisms of ischemic injury and reduce brain tissue damage. Among potential neuroprotective drug, cyclin-dependent kinases (CDK) inhibitors represent interesting therapeutic candidates. Increasing evidence indisputably links cell cycle CDKs and CDK5 to the pathogenesis of stroke. Although recent studies have demonstrated promising neuroprotective efficacies of pharmacological CDK inhibitors in related animal models, none of them were however clinically relevant to human treatment.In the present study, we report that systemic delivery of (S)-roscovitine, a well known inhibitor of mitotic CDKs and CDK5, was neuroprotective in a dose-dependent manner in two models of focal ischemia, as recommended by STAIR guidelines. We show that (S)-roscovitine was able to cross the blood brain barrier. (S)-roscovitine significant in vivo positive effect remained when the compound was systemically administered 2 hrs after the insult. Moreover, we validate one of (S)-roscovitine in vivo target after ischemia. Cerebral increase of CDK5/p25 activity was observed 3 hrs after the insult and prevented by systemic (S)-roscovitine administration. Our results show therefore that roscovitine protects in vivo neurons possibly through CDK5 dependent mechanisms.Altogether, our data bring new evidences for the further development of pharmacological CDK inhibitors in stroke therapy

    Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications

    Get PDF
    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs

    Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study

    Get PDF
    Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≀ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015

    The Type and the Position of HNF1A Mutation Modulate Age at Diagnosis of Diabetes in Patients with Maturity-Onset Diabetes of the Young (MODY)-3

    Get PDF
    OBJECTIVE—The clinical expression of maturity-onset diabetes of the young (MODY)-3 is highly variable. This may be due to environmental and/or genetic factors, including molecular characteristics of the hepatocyte nuclear factor 1-α (HNF1A) gene mutation. RESEARCH DESIGN AND METHODS—We analyzed the mutations identified in 356 unrelated MODY3 patients, including 118 novel mutations, and searched for correlations between the genotype and age at diagnosis of diabetes. RESULTS—Missense mutations prevailed in the dimerization and DNA-binding domains (74%), while truncating mutations were predominant in the transactivation domain (62%). The majority (83%) of the mutations were located in exons 1- 6, thus affecting the three HNF1A isoforms. Age at diagnosis of diabetes was lower in patients with truncating mutations than in those with missense mutations (18 vs. 22 years, P = 0.005). Missense mutations affecting the dimerization/DNA-binding domains were associated with a lower age at diagnosis than those affecting the transactivation domain (20 vs. 30 years, P = 10−4). Patients with missense mutations affecting the three isoforms were younger at diagnosis than those with missense mutations involving one or two isoforms (P = 0.03). CONCLUSIONS—These data show that part of the variability of the clinical expression in MODY3 patients may be explained by the type and the location of HNF1A mutations. These findings should be considered in studies for the search of additional modifier genetic factors

    Intensive care in patients with lung cancer : a multinational study

    Get PDF
    This is a pre-copyedited, author-produced version of an article accepted for publication in Annals of Oncology following peer review. The version of record M. Soares, et al, 'Intensive care in patients with lung cancer: a multinational study', Annals of Oncology, Vol. 25 (9): 1829-1835, September 2014, is available online at https://doi.org/10.1093/annonc/mdu234.BACKGROUND: Detailed information about lung cancer patients requiring admission to intensive care units (ICUs) is mostly restricted to single-center studies. Our aim was to evaluate the clinical characteristics and outcomes of lung cancer patients admitted to ICUs. PATIENTS AND METHODS: Prospective multicenter study in 449 patients with lung cancer (small cell, n = 55; non-small cell, n = 394) admitted to 22 ICUs in six countries in Europe and South America during 2011. Multivariate Cox proportional hazards frailty models were built to identify characteristics associated with 30-day and 6-month mortality. RESULTS: Most of the patients (71%) had newly diagnosed cancer. Cancer-related complications occurred in 56% of patients; the most common was tumoral airway involvement (26%). Ventilatory support was required in 53% of patients. Overall hospital, 30-day, and 6-month mortality rates were 39%, 41%, and 55%, respectively. After adjustment for type of admission and early treatment-limitation decisions, determinants of mortality were organ dysfunction severity, poor performance status (PS), recurrent/progressive cancer, and cancer-related complications. Mortality rates were far lower in the patient subset with nonrecurrent/progressive cancer and a good PS, even those with sepsis, multiple organ dysfunctions, and need for ventilatory support. Mortality was also lower in high-volume centers. Poor PS predicted failure to receive the initially planned cancer treatment after hospital discharge. CONCLUSIONS: ICU admission was associated with meaningful survival in lung cancer patients with good PS and non-recurrent/progressive disease. Conversely, mortality rates were very high in patients not fit for anticancer treatment and poor PS. In this subgroup, palliative care may be the best option.Peer reviewedFinal Accepted Versio

    Functional outcomes in adult patients with herpes simplex encephalitis admitted to the ICU: a multicenter cohort study

    Get PDF
    PURPOSE: We aimed to study the association of body temperature and other admission factors with outcomes of herpes simplex encephalitis (HSE) adult patients requiring ICU admission. METHODS: We conducted a retrospective multicenter study on patients diagnosed with HSE in 47 ICUs in France, between 2007 and 2017. Fever was defined as a body temperature higher or equal to 38.3 °C. Multivariate logistic regression analysis was used to identify factors associated with poor outcome at 90 days, defined by a score of 3-6 (indicating moderate-to-severe disability or death) on the modified Rankin scale. RESULTS: Overall, 259 patients with a score on the Glasgow coma scale of 9 (6-12) and a body temperature of 38.7 (38.1-39.2) °C at admission were studied. At 90 days, 185 (71%) patients had a poor outcome, including 44 (17%) deaths. After adjusting for age, fever (OR = 2.21; 95% CI 1.18-4.16), mechanical ventilation (OR = 2.21; 95% CI 1.21-4.03), and MRI brain lesions > 3 lobes (OR = 3.04; 95% CI 1.35-6.81) were independently associated with poor outcome. By contrast, a direct ICU admission, as compared to initial admission to the hospital wards (i.e., indirect ICU admission), was protective (OR = 0.52; 95% CI 0.28-0.95). Sensitivity analyses performed after adjustment for functional status before admission and reason for ICU admission yielded similar results. CONCLUSIONS: In HSE adult patients requiring ICU admission, several admission factors are associated with an increased risk of poor functional outcome. The identification of potentially modifiable factors, namely, elevated admission body temperature and indirect ICU admission, provides an opportunity for testing further intervention strategies
    • 

    corecore