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a b s t r a c t

As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly

from the spin exchange optical pumping (SEOP) process through expansion followed by compression

to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally

requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp
129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction

schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization.

It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for

hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extrac-

tion methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp

gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during

the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures contain-

ing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures.

The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentra-

tion within excised lungs.

� 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

Biomedical noble gas MRI applications require high signal

intensities that can be obtained through the hyperpolarization of

the nuclear spin state. Hyperpolarization is generated through spin

exchange optical pumping (SEOP) using high power laser irradia-

tion of alkali metal vapor (typically rubidium) in the presence of

the noble gas isotope [1–10]. Although nuclear spin polarization

levels around 50% can now be produced for 129Xe at rates of liters

per hour [7,11], the high costs involved with the reliable hyperpo-

larized (hp) 129Xe production may impede its widespread MRI

usage. Developments, such as small and transportable hyperpolar-

izer units [12], that make 129Xe MRI more affordable would help to

proliferate clinical or pre-clinical usage and therefore foster further

exploration of hp 129Xe as a pathophysiological biomarker. Fur-

thermore, a new approach is needed for hp 83Kr MRI where the

quadrupolar nature of the isotope causes challenges for the pro-

duction process. Hp 83Kr applications in pulmonary research were

thus far limited to low resolutionMRI [13,14] and to spatially unre-

solved relaxation measurements in rat lungs [15].

The objective of this work was to omit cryogenic separation in

the hp noble gas production process for pulmonary MRI. The ‘cryo-

genics-free’ concept [16] is beneficial for reducing the complexity,

and therefore the costs, of the hp 129Xe production. Furthermore,

this concept is crucial for biomedical hp 83Kr MRI since quadrupo-

lar relaxation causes the loss of the hyperpolarized spin state dur-

ing cryogenic separation. The streamlined hp 129Xe and hp 83Kr

production procedure without cryogenic gas separation was tested

in applications for MRI of excised rat lungs. The developmental

work utilized ex vivo lungs in order to simplify experimental and

regulatory procedures but the general concepts will be extendible

to in vivo MRI.

1090-7807/$ - see front matter � 2013 The Authors. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmr.2013.09.008

q This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original author and source are credited.
⇑ Corresponding author. Address: University of Nottingham, Sir Peter Mansfield

Magnetic Resonance Centre, Nottingham NG7 2RD, United Kingdom. Fax: +44 (0)

115 9515166.

E-mail address: Thomas.Meersmann@Nottingham.ac.uk (T. Meersmann).
1 Present address: School of Science and Technology, Nottingham Trent University,

Clifton Campus, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
2 Present address: Magnetics Group, Electromagnetics Division, National Institute

of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.

Journal of Magnetic Resonance 237 (2013) 23–33

Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmr.2013.09.008&domain=pdf
http://dx.doi.org/10.1016/j.jmr.2013.09.008
mailto:Thomas.Meersmann@Nottingham.ac.uk
http://dx.doi.org/10.1016/j.jmr.2013.09.008
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr


2. Background

2.1. Stopped flow SEOP with highly concentrated 129Xe or 83Kr at low

pressures

Low xenon concentrations are typically used for 129Xe SEOP be-

cause a high density of this noble gas is detrimental to the process.

The noble gas is usually diluted to 1–5% in mixtures with molecu-

lar nitrogen or helium (i.e. 4He). In the case of helium as the dilut-

ing gas, approximately 2–5% N2 are added in the mixture to ensure

radiation quenching [10,17]. The low xenon density in the SEOP

gas mixture enables high spin polarization to be generated and val-

ues with P > 60% have been reported [6–8]. However, the method

necessitates cryogenic separation after SEOP with hp xenon accu-

mulation in the frozen state at cryogenic temperatures (typically

77 K) and the removal of all other gases of the mixture through

evacuation [18]. In analogy to 129Xe SEOP, a low concentration of

krypton is crucial for efficient SEOP of 83Kr. Despite the quadrupo-

lar driven 83Kr T1 relaxation, a high spin polarization of P = 26% in a

gas mixture of 5% krypton and 95% N2 was obtained in stopped

flow SEOP [10]. Unfortunately for hp 83Kr MRI, there is currently

no practical method to separate or concentrate hp 83Kr from the

gas mixture without substantial depolarization of its nuclear spin

state. Fast quadrupolar driven T1 relaxation in the condensed state

[19,20] prevents cryogenic separation of this isotope and the pro-

duction process has to be realized without gas separation.

The need for cryogenic separation is diminished if concentrated

noble gas mixtures are used in low pressure SEOP. The associated

detrimental effects of high xenon or krypton densities can partially

be alleviated by low SEOP gas pressure [10,21,22]. However, the

pressure broadening of the alkali metal D1 transition is also re-

duced with lower SEOP pressures and therefore narrow laser line-

width are beneficial. Note that line narrowed diode array lasers

with high power output are becoming increasingly available at

affordable costs [23–25]. In a recent study, the pressure depen-

dence of the SEOP process under stopped flow conditions was ex-

plored for various gas mixtures using a line-narrowed laser (i.e.

0.23 nm FWHM at 794.7 nm) [10].

Using stopped flow SEOP, the highest 129Xe polarization was

found at pressures between 22 and 46 kPa depending on the mix-

ture used as shown in Fig. 1. Similarly, the highest 83Kr polarization

value for the various gas mixtures were found at a pressure range

between 30 and 54 kPa. In stopped flow SEOP, the gas mixture re-

mains in the SEOP cell until a (near) steady state polarization is ob-

tained, thus maximizing the obtained spin polarization. Note that

the stopped flow mode is crucial for the production of hp 83Kr

for MRI applications. Furthermore, stopped flow SEOP opens up

the possibility for a single extraction–compression cycle for the

hp noble gases.

2.2. The apparent polarization Papp

In order to simplify comparison of the MR signal expected form

diluted hp gas mixtures with that of concentrated hp 129Xe, the

apparent polarization, Papp, was defined for hp gas mixtures:

Papp ¼ P �
½NG�
P

i½Mi�
ð1Þ

where the scaling of the spin polarization, P, is taken into account

through the noble gas (number) density, [NG], divided by the over-

all (number) density of all components Mi in the mixture [10]. This

definition is useful because Papp allows for easy comparison of the

signal intensities from diluted hp noble gas mixtures – i.e. a dilute

mixture with Papp = 10% results in the same NMR signal intensity as

that of a pure hp noble gas with P = 10%.

In the previous work, using 23 W of incident laser power, the

highest apparent polarizations for hp 83Kr were found with the

Papp ¼ 4:4� 0:5% for the 25% krypton–75% N2 mixture and

Papp ¼ 4:3� 0:5% for the 50% krypton–50% N2 gas mixture. Higher

and lower krypton concentration quickly leads to reduced appar-

ent polarizations as shown in Fig. 1. Similarly, the highest 129Xe

polarization was found for the 50% xenon–50% N2 mixture with

Papp ¼ 15:5� 1:9%.

3. Extraction of the hp gas mixture from low pressure SEOP cells

An apparent 129Xe polarization of Papp = 15.5% as shown in Fig. 1

is sufficiently high to consider the cryogenics free hp 129Xe produc-

tion for biomedical MRI applications. However, the cryogenic pro-

cess does not only facilitate gas separation, it usually also enables

gas transport from the SEOP cell to a small volume cold finger dur-

ing the freezing phase. Subsequent sublimation of the frozen hp
129Xe allows for recompression of the hp gas to ambient pressure

or above. If this step is omitted, some other means of hp gas trans-

portation needs to be instituted for low pressure SEOP. For simple

polarization measurements the hp gas can be transferred through

expansion from the SEOP cell through transfer tubing into a pre-

evacuated sample cell for NMR detection at low pressures

(Fig. 2). This method was used in this work to provide baseline data

Fig. 1. Apparent spin polarization as a function of SEOP pressure for 129Xe and 83Kr. Data taken from reference [10] but reprocessed to display apparent polarization. (a) 129Xe

apparent spin polarization (polarization accounting for buffer gas dilution) for five different gas mixtures. Data for the 40.3% Xe–59.7% N2 mixture are original to this work.

Data analysis were preformed as described previously [10]. (b) 83Kr apparent spin polarization Papp for different gas mixtures. See legend for icon explanation.
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and is therefore dubbed ‘Baseline Scheme’. However, for biomedi-

cal applications, such as lung MRI in an ambient pressure environ-

ment, the hp gas is required to be compressed before usage. This

task, by itself, is not new as metastability exchange optical pump-

ing (MEOP) of 3He typically takes place at low pressures in batch

mode and a number of techniques to recompress hp 3He have been

successful [26–28]. Further, a diaphragm pump was used by Imai

et al. [21] to recompress hp 129Xe for low pressure SEOP with re-

ported loses as low as 1/10 of the polarization value.

This work focused on hp gas extraction in a single expansion–

compression cycle. The transport from the low pressure SEOP cell

was accomplished by expansion into a large volume of a collapsible

container. The volume Vext of the respective gas expansion cham-

ber was required to be much larger than that of the SEOP cell

(VSEOP) to allow for a rapid transfer of a large portion of the hp

gas. The extraction container was then collapsed and its content

was pressurized to ambient by the application of external gas pres-

sure. Two designs were explored to facilitate the extraction

scheme: Extraction Scheme 1 – The first design used an inflatable

balloon and was intended to minimize machining requirements

during fabrication and complexity during operation. A latex bal-

loon was used in this to allow for a large volume Vext and large

pressure differential. Extraction Scheme 2 – The second design uti-

lized a gas-operated piston and was more demanding for the man-

ufacturing process because it needed to ensure smooth running but

also tight operation of the piston within a cylinder (see Section 6).

Fig. 2 shows the straightforward concept of Extraction Scheme 1

with an inflatable latex balloon as expansion volume. The balloon

was contained within a gas tight chamber that could be pressur-

ized or evacuated depending on the required task. The inside of

the balloon was connected, via the valves A and B, to the SEOP cell

and could take up a high fraction of the hp gas mixture.

During stopped flow SEOP, the interior of the balloon and the

surrounding external space were both evacuated causing the bal-

loon to assume a collapsed state due to the elasticity of the latex.

The hp gas was then transferred into the balloon while its external

volume (i.e. the pressure control chamber) was still connected to

the vacuum pump. Following the hp gas transfer, the balloon

was compressed above ambient by filling the pressure control

chamber with pressurized N2 (typically 100–200 kPa above ambi-

ent to ensure fast compression). The hp gas was transferred to

the pre-evacuated detection cell for the NMR polarization mea-

surement by opening valves A and C. The spin polarization of the

hp gas determined from this measurement was approximately

the same as the polarization of the inhaled gas for the pulmonary

MRI measurements.

The second design, sketched in Fig. 3, utilized a pressure driven

piston (Extraction Scheme 2). The movable piston sealed two parts

of a cylinder, thus it allowed for a variable volume Vext on one side

of the piston while the other side of the piston was used as a pres-

sure control chamber. Like a syringe, the gas extractor could re-

move the hp gas from the SEOP cell, compress it, and finally

‘inject’ the hp gas into a target system. This setting is reminiscent

to the approach used by Rosen and co-workers for hp 129Xe [4],

however this concept was extended to accommodate the high

pressure-differential during hp gas extraction and compression.

4. Results and discussion

4.1. Hp 129Xe extraction

The apparent spin polarization Papp obtained after hp 129Xe

transfer with Extraction Scheme 1 is shown in Fig. 4a as a function

of SEOP pressure for various SEOP mixtures (open symbols). The

apparent polarization Papp of hp 129Xe transferred directly from

the SEOP cell into the NMR detection cell served as baseline data,

also shown in Fig. 4a (filled symbols). At SEOP pressure above

approximately 50 kPa little difference was found in the spin polar-

ization Papp between baseline data and Extraction Scheme 1. Polar-

ization losses below this pressure are visualized in Fig. 4b where

the Extraction Scheme 1 polarization data was normalized by the

respective baseline values (filled symbols). The normalized data

demonstrates that the losses occurring below 50 kPa were gas mix-

ture independent.3

Fig. 4b also displays data using Extraction Scheme 2 (crosses)

and it can be seen that polarization losses appeared only for SEOP

pressures below 0.2 kPa.

Fig. 2. Production and delivery of hp noble gas using Extraction Scheme 1. (a) Noble

gas–nitrogen gas mixtures are hyperpolarized in the SEOP cell. In the ‘Baseline

Scheme’ measurements the extraction unit is closed to the SEOP cell and hp noble

gas–nitrogen mixture is transferred to a glass detection cell via pressure equaliza-

tion. Note that the Rb filters (F1 and F2) were only used for Rb vapor analysis

described in Section 4.3 (b and c) Outline of device used in ‘Extraction Scheme 1’.

Internal volume of the latex balloon serves as volume Vext. Hp gas mixture is

transferred from SEOP cell into Vext as shown in (b). The main chamber of the

extraction unit is pressurized with N2 causing the balloon to collapse after closing of

valve A as shown in (c). The hp gas is then redirected through valves A and C

towards its intended target.

3 Normalized polarization values slightly above unity are observed at higher SEOP

cell pressures. This is likely caused by an inhomogeneous distribution of the hp gas

within the SEOP cell that is only partially probed by the Baseline Scheme.
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Both devices (Extraction Schemes 1 and 2) allowed for cryogen-

ics free hp 129Xe extraction at acceptable losses in the polarization

at experimentally useful SEOP pressure conditions. Extraction

Scheme 2 was slightly advantageous at lower pressures over the

balloon based Extraction Scheme 1 probably because it accommo-

dated the hp gas transfer more rapidly and it therefore reduced the

overall relaxation during the transfer. Unlike Expansion Scheme 1,

where the expanding gas had to perform work against the surface

tension of the balloon, the piston in Extraction Scheme 2 was al-

ready pushed into its ‘backward’ position before the gas transfer.

Therefore, the hp 129Xe expanded directly into the evacuated vol-

ume Vext, a process that was faster than Extraction Scheme 1 where

time was required to inflate the balloon. Nevertheless, Fig. 4 shows

that Papp � 14% were obtained with Extraction Scheme 1.

Hp gas extraction with the Extraction Scheme 1 took approxi-

mately 5 s until a pressure of about 40–150 kPa, depending on

the initial SEOP pressure, was reached. Compression to above

atmospheric pressure was accomplished within 6 s and the gas

was transferred into the NMR detection cell 15 s after commence-

ment of the extraction process. Similarly, using Extraction

Scheme 2, the gas was allowed to expand until a pressure of about

6–13 kPa was measured leading to about 3/4 of the hp gas to be

transferred into the cylinder. Compressing the hp gas to above

ambient pressures took 3 s and the gas transfer into the detection

cell was complete within 10 s after the initiation of the extraction

process. The fraction of hp gas transferred was less than would be

expected given the volumes of the SEOP cell, Vmax
ext , the initial pres-

sure during SEOP, and the final pressure after extraction. However,

the transfer of the hp gas at the remaining small pressure differen-

tial towards the end of the extraction process was slow. Prolonged

transfer times that allow for a maximized hp gas transfer were

found to be detrimental to the overall spin polarization of the final

hp gas sample.

Using a 40% xenon in nitrogen mixture and an SEOP at pres-

sure of 50 kPa, roughly 18 ml of hp 129Xe (with Extraction

Scheme 1) with Papp � 14% were obtained (Fig. 4). For the imag-

ing experiments, a 25% xenon mixture was used at 40 kPa lead-

ing to a lower polarization of Papp = 10.9 ± 0.1% that was

delivered for inhalation to an excised rat lung (see Section 6

for further experimental details). Since this polarization led to

excellent image quality shown in Fig. 5, the experiments were

not repeated with the 40% mixture. A single, cryogenics free

delivery of hp 129Xe was used and 4 ml of the hp gas mixture

were inhaled by the excised rat lung for each MRI without signal

averaging (Fig. 5a, c, d, e, g and h) or for each of the scans when

signal averaging was applied (Fig 5b and f). Variable flip angle

(VFA) FLASH MRI sequence [29] was applied to utilize the com-

plete hyperpolarized spin state.

Imai et al. had previously demonstrated in vivo hp 129Xe MRI

under continuous flow conditions without cryogen usage. This

method allowed for, but also required, many inhalation cycles.

However, Fig. 4 demonstrates that cryogenics free, slice selective

MRI is feasible within a single scan (number of experiments;

NEX = 1) with the extraction schemes presented in this work, at

least for ex vivo work. Note that the high applied field strength of

9.4 T was not necessarily advantageous for pulmonary hp 129Xe

MRI due to strong magnetic field inhomogeneities in the heteroge-

neous medium leading to fast transverse relaxation with

T�
2 = 1.77 ± 0.37 ms. In vivo application of this method was not ex-

plored in this work, however Extraction Scheme 1 was applied to

ex vivo lung functional studies, including post mortem airway sen-

sitivity to methacholine challenge, published elsewhere [30].

Fig. 3. The extraction unit used for Extraction Scheme 2. (a) Diagram of the two-chamber extraction unit with the front chamber (Vext) to accommodate the hp gas. The

chambers are separated by a single piston equipped with an O-ring; the piston is driven by a pressure differential between the two chambers. (b) The piston is moved to the

back position through pressurization of Vext with N2 and simultaneous evacuation of the back chamber. (c) Vext was evacuated to prepare for hp gas extraction from SEOP cell.

(d) Hp gas extraction from SEOP cell is complete and Vext is filled with approximately 6 kPa of hp gas. (e) The volume Vext is sealed by valve A and the back chamber is

pressurized with N2 forcing the piston forward thus compressing the hp gas. Once the hp gas in Vext is above ambient pressure valves A + C are opened and hp gas is injected

into a temporary storage container for inhalation.
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4.2. Hp 83Kr extraction

Due to quadrupolar relaxation that causes fast depolarization, a

rapid gas transfer is crucial for the hp 83Kr extraction if polarization

losses are to be minimized. Since transfer rate of the hp gas was

dependent on the extraction scheme (see discussion in the Hp
129Xe extraction section) one would expect clear differences in the

observed hp 83Kr spin polarization between Extraction Scheme 1

and 2. As shown in Fig. 4c, the slower Extraction Scheme 1 lead

to substantial polarization losses compared to baseline data at all

SEOP pressures below 150 kPa (filled squares). There was a clear

advantage of Extraction Scheme 2 (triangles) and approximately

80% of the baseline polarization was recovered with this method

at SEOP pressures above 50 kPa. The higher losses in polarization

with Extraction Scheme 1 probably occurred not only because of

the slower transfer rate but also because of the large surface to vol-

ume ratio during the stages when the balloon was partially

collapsed.

The baseline scheme applied to the 25% krypton–75% nitrogen

mixture after SEOP at 50 kPa lead to a maximum apparent spin

polarization of Papp = 4.4% (as shown in Fig. 1) and approximately

80% were recovered with Extraction Scheme 2 leading to

Papp � 3:5%. For the hp 83Kr MRI with natural abundance (11.5%)
83Kr shown in Fig. 5a and b the SEOP pressure was kept at a higher

pressure around 85 kPa leading to 34 ml of hp gas with Papp � 3:3%

through Extraction Scheme 2 (Baseline Scheme Papp � 3:5%). An

8 ml quantity of hp 83Kr gas mixture was inhaled by the lung from

VB (see Section 6) within 3 s after delivery but the extent of hp 83Kr

depolarization in this container was not determined. The 83Kr

polarization was sufficient to produce a coronal, non-slice selective

image at about half of the resolution as the corresponding hp 129Xe

MR images.

Due to the low natural abundance of 83Kr, the resulting MR

images were improved drastically using isotopically enriched (i.e.

99.925%) 83Kr as shown in Fig. 6c. Isotopically enriched 83Kr is

quite expensive with approximately € 4000 per liter gas (at

100 kPa) and only a small quantity was available for the experi-

ments. Therefore, mixing of the costly gas with N2 was done

in situ within the SEOP cell and resulted into slightly higher SEOP

pressures around 90–100 kPa that produced approximately 40 ml

hp gas mixture at ambient pressure with an apparent polarization

of Papp � 2:4% after Extraction Scheme 2.

4.3. Rubidium vapor

Rubidium metal atoms, forming a solid at ambient tempera-

tures, were present in the vapor phase during SEOP but most of

the metal should have been condensed during hp gas transfer

within the connecting tubes and the extraction unit. However,

the cryogenic-free extraction schemes may raise concerns about

physiologically harmful quantities of rubidium vapor that could

potentially pass along with the hp gas mixture through the extrac-

tion process. To investigate whether physiologically significant pH

changes could have been caused by any remaining rubidium vapor

in the extracted hp gas mixtures, gas filters were inserted into the

transfer lines at two locations (see Fig. 2a). Note, all polarization

measurements and MRI reported in this work were obtained with-

out these filters. Filters were used only in separate measurements

to serve as a probe for the presence of rubidium.

Filters were tested with hp 83Kr production at the associated

high SEOP temperatures (170 ± 5 K). After a certain number of cy-

cles the filters were removed and washed with 1.0 ml distilled

water. The strongest pH change, +2.5, was observed in position

F1 (i.e. at the SEOP cell outlet; Fig. 2a) and a pH change of +1

was found in position F2 (following extraction–compression) after

30 production cycles. Therefore it can be concluded that most of

the Rb vapor condensed within the transfer lines and inside the

extraction–compression unit. The preliminary finding suggest that

physiologically harmful pH changes in rodent lungs after a few

cryogenics-free hp gas deliveries are not likely, even with the high

Rb density at 83Kr SEOP conditions and in the absence of gas filters.

Although filter usage may still be prudent for further reducing any

potentially remaining Rb contamination, a study detailing the ex-

act quantity of the Rb carried through the gas extraction process

Fig. 4. Hp gas polarization using different extraction schemes. (a) 129Xe apparent

spin polarization for three different gas mixtures with Baseline Scheme and

Extraction Scheme 1 (see figure legend for clarity). Solid lines show data analysis

from Fig. 1 for comparison with current experimental data. The arrow indicates the

SEOP cell pressure used for 129Xe imaging experiments. (b) Fraction of the 129Xe

polarization after the extraction–compression process (Pex-com/Pbaseline) or ‘‘polar-

ization survival’’ as a function of SEOP cell pressure for three different gas mixtures

using Extraction Schemes 1 and 2. (c) Pex-com/Pbaseline of the 83Kr polarization as a

function of SEOP cell pressure using Extraction Schemes 1 and 2. Polarization losses

were greater when Extraction Scheme 1 was used at low pressures (below 150 kPa),

making Extraction Scheme 2 a superior choice for 83Kr imaging studies.
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and the effects of filtering techniques upon the spin polarization is

beyond the scope of this work.

4.4. Mixing of hp 129Xe or hp 83Kr with O2 during extraction

Extraction scheme 2 was modified to generate hp gas mixtures

with a precisely selected O2 concentration. After transfer of the hp

gas into the volume Vmax
ext of the extraction unit, O2 was added and

resulted in a carefully regulated pressure increase until the desired

O2 concentration was reached. The total pressure in the large vol-

ume Vmax
ext = 790 ml was typically between 10–20 kPa and the mix-

ing of the gasses was sufficient within 5 s after addition of O2. The

method was tested by measuring the 129Xe longitudinal relaxation

rates caused by paramagnetic O2 as a function of O2 density (or

corresponding oxygen concentration; shown in Fig. 7).

The O2 density dependent relaxation data shown in Fig. 7a

(filled triangles) demonstrated the accuracy in the preparation of

the gas mixture. The data was obtained using a series of small flip

Fig. 5. 129Xe VFA FLASH coronal images of ex vivo rat lungs using Extraction Scheme 1 and Extraction Scheme 2. Image size was 128 � 64 with FOV = 46.9 � 30.0 mm2. The

lungs were ventilated with 4 ml hp 129Xe gas mixture. (a) A 4 mm central slice collected in a single acquisition (NEX = 1) using natural abundance xenon and Extraction

Scheme 1 (SNR = 8.1). (b) Four image acquisitions (NEX = 4) similar to (a) collected from different inhalation cycles and averaged (SNR = 13.8). (c) A 4 mm central slice

collected in a single acquisition (NEX = 1) using isotopically enriched xenon (83% 129Xe) and Extraction Scheme 1 (SNR = 24.7). (d) A 4 mm central slice collected using

isotopically enriched xenon similar to (c), where Extraction Scheme 2 was used (NEX = 1, SNR = 22.1). There was little noticeable difference between the images of the two

Extraction Schemes. (e–h) Non-slice selective images corresponding to (a–d) slice-selective images (SNRe = 19.3; SNRf = 41.2; SNRg = 64.4; SNRh = 81.6) collected as described

in Section 6.4.

Fig. 6. 83Kr VFA FLASH coronal images of ex vivo rat lungs using Extraction Scheme 2. Image size is 64 � 32. The lungs were ventilated with 8 ml hp 83Kr gas mixture. (a) A

non-slice selective image collected in a single acquisition with FOV = 51.0 � 38.1 mm2 (NEX = 1, SNR = 12.5). (b) Four non-slice selective images similar to (a) collected over

different inhalation cycles and averaged. (NEX = 4, SNR = 25.4). (c) A 6 mm central slice collected in a single acquisition (NEX = 1) using isotopically enriched krypton (99.925%
83Kr) with FOV = 50.9 � 40.7 mm2 (SNR = 24.7).
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angle pulses at physiologically relevant, (i.e. ambient) pressure.

The resulting slope of the oxygen density dependent 129Xe relaxa-

tion rate

1

T1qO2

 !290 K;9:4 T

129Xe

¼ 0:360 � 0:007 s�1 amagat�1 ð2Þ

at 9.4 T field strength and 290 K was in good agreement with that

obtained by Jameson et al. with thermally polarized 129Xe at high

xenon and oxygen densities [31]:

1

T1qO2

 !9:4 T

129Xe

¼ 0:343 s�1 amagat1 � ðT=300 KÞ�0:03 ð3Þ

where T is the temperature of the gas mixture in Kelvin. An amagat

is defined in this work as the density of an ideal gas at standard

pressure and temperature of 101.325 kPa and 273.15 K and there-

fore 1 amagat ¼ 2:6868� 1025 m�3. At the conditions used in this

work, N2, O2, Kr, and Xe are considered to follow ideal gas laws.

According to Eq. (2), a relaxation time of T1 = 14.2 s was observed

for a 21% O2, 79% hp 129Xe–N2 mixture contained in an NMR test

tube at 9.4 T and ambient pressure. However, the experimental set-

up used in this work was also applied to relaxation measurements

in lungs as shown in Fig. 7c after SEOP, hp gas extraction, mixing

with a quantified amount of O2, compression, transfer into a storage

container, and inhalation by the excised lungs. The average longitu-

dinal relaxation rate for two excised lungs was found to have the

following dependence:

1

T1qO2

 !290 K;9:4 T

129Xe

¼ 0:361� 0:020 s�1 amagat�1 ð4Þ

Eq. (4) describes the oxygen dependent term of the 129Xe T1
relaxation, however the average longitudinal relaxation rate mea-

sured in the absence of oxygen (i.e. the zero density intercept in

Fig. 7a) was 1=T ð0Þ
1 ¼ 5:0� 0:5� 10�3 s�1 in the two lungs. Neglect-

ing the very small contribution of 129Xe gas phase interactions to

the longitudinal relaxation, the oxygen independent term in the

lung is essentially relaxation caused by relaxation of tissue-dis-

solved xenon that is in rapid exchange with the gas phase. The

average slope of the oxygen density dependent relaxation for the

two rat lungs is in good agreement with Eq. (2). This agreement

indicates that the presence of the excised lung did not strongly af-

fect the hp 129Xe relaxation dependence on oxygen (i.e. compared

to the bulk gas phase), despite tissue dissolved O2 and approxi-

mately 1–2% tissue dissolved xenon [32]. In any case, Extraction

Scheme 2 enabled precise mixing of O2 with the hp gas during

the extraction process and thus may be of use for future hp 129Xe

measurements of in vivo oxygen partial pressures that provide lung

functional information about oxygen exchange in lungs [33].

The effect of paramagnetic oxygen upon the 83Kr relaxation

behavior is shown in Fig. 7a and b. The oxygen density dependent
83Kr relaxation rates exhibited a slope that is approximately two

orders of magnitude smaller than that for 129Xe:

1

T1qO2

 !290 K;9:4 T

83Kr;ð25%Kr;75%N2Þ

¼ 0:002� 0:0009 s�1 amagat�1 ð5Þ

The vast difference in observed relaxation behavior between xe-

non and krypton due to the presence of paramagnetic oxygen were

mostly caused by the difference in the square of the gyromagnetic

ratios ðcIÞ
2
129Xe=ðcIÞ

2
83Kr � 51:9 [34]. However, unlike the 129Xe–O2

pair [31] or the 3He–O2 interaction [35], the situation for 83Kr is

complicated by quadrupolar relaxation that makes quantitative

interpretation of the paramagnetic contributions difficult. As can

Fig. 7. Relaxation rate (1/T1) of hp noble gas as a function of O2 density.

Hyperpolarized noble gas–N2 mixtures were mixed at low pressure with O2 using

the piston extraction unit. Hp gas was delivered into detection cell similar to

Extraction Scheme 2. (a) 129Xe and 83Kr bulk gas phase relaxation measurements in

a detection cell. Note that the relaxation rate depends linearly on O2 density for

both isotopes. 129Xe data agreed well with literature values [31]. (b) A zoom in into

the intercept area of (a). Note that 83Kr relaxation rate was more than 2 orders of

magnitude less dependent on O2 density than that of 129Xe. Also note the crossover

of the Xe and Kr data, further explanation are in the text. (c) 129Xe relaxation rate as

a function of O2 density inside two excised rat lungs. 129Xe relaxation rate

dependence on O2 density remained the same for the lungs studied. The average

slope for the two data sets of 1=T1qO2
¼ 0:361 � 0:020 s�1 amagat�1 compared

well with 1=T1qO2
¼ 0:360 � 0:007 s�1 amagat�1 determined in the glass detection

cell. Note that the relaxation rate of 129Xe in a lung in the absence of O2 was

1=Tð0Þ
1 ¼ 5:0 � 0:5 � 10�3 s�1 . The error bars represent the systematic error of the

experiment.
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be seen from the (zero oxygen density) intercept in Fig. 7b, quad-

rupolar relaxation of gaseous 83Kr in a macroscopic container dom-

inated over the paramagnetic contributions to the relaxation, at

least for the investigated O2 concentrations. Quadrupolar relaxa-

tion ðTQ
1 Þ arises from surface interactions [36], gas composition

dependent van der Waals complexes, and gas pressure and compo-

sition dependent binary collisions [37,38]; as shown in following

equation:

1

T1

¼
1

Tpara
1

þ
1

Tsurface
1

þ
1

TvdW1

þ
1

Tbinary
1

ð6Þ

Due to quadrupolar relaxation, Eq. (5) is only valid for O2 added

to the particular 25% krypton–75% N2 mixture because different

krypton–nitrogen ratios will result to different ð1=T1qO2
Þ
83Kr

values.

Note that quadrupolar relaxation dominated over paramagnetic

relaxation even in the macroscopic gas container with small S/V

and concentrations of up to 40% O2. It should therefore come at

no surprise that similar O2 concentrations did not affect the 83Kr

relaxation in rat lungs where high S/V lead to T1 � 1� 1:2 s [15].

5. Conclusions

Cryogenics free hp 129Xe and hp 83Kr production is feasible for

biomedical MRI applications. The methodology is based on previ-

ous results that found high apparent spin polarization values Papp
at high xenon (or krypton) concentrations in low-pressure SEOP

using line narrowed diode array laser. In this work, focused on

the cryogenics free hp gas extraction and transfer steps, the maxi-

mum apparent polarization of the noble gas was found to be

Papp � 14% for 129Xe and approximately Papp = 3.5% for 83Kr using

only 23.3 W laser power incident at the SEOP cell. The volume of

the hp gas was 	18 ml after 6 min SEOP for hp 129Xe and 	34 ml

after 8 min SEOP for hp 83Kr. The explored methodology was based

on stopped flow SEOP and larger volumes per unit time require

either the usage of larger SEOP cells and higher laser power. Alter-

natively, many SEOP units can be run in parallel. Furthermore,

polarization can be further improved through higher than the

23.3 W of laser power used in this work.

Simple pH based tests indicated on the minimal rubidium con-

tent of the ambient pressure hp gas to be minimal despite the ab-

sence of gas filters used during the hp gas extraction. The

presented methodology therefore allows for a simplified and, with

higher laser power becoming more readily available, potentially

low cost hp 129Xe production method. The generated polarization

Papp and the volume of hp gas were sufficient for slice selective,

coronal hp 129Xe MR images of excised rodent lungs in a single

inhalation cycle. The methodology is crucial for hp 83Kr MRI and

single inhalation cycle images using isotopically enriched 83Kr

were obtained. An extraction scheme utilizing a single cycle piston

pump was shown to accomplish efficient hp 83Kr gas extraction

that preserved Papp at a high level. In comparison a much simpler

inflatable balloon based extraction scheme was found to be

remarkably efficient for hp 129Xe extraction.

For both noble gases, the piston pump based extraction scheme

allowed for precise mixing of the hp gas with a selected quantity of

oxygen. This procedure may be helpful for in vivo studies, such as

oxygen partial pressure measurements in lungs. Excised lung data

suggests that the 129Xe T1 relaxation dependence on the O2 concen-

tration is very similar to that found in the bulk gas phase. In the ab-

sence of O2, the
129Xe T1 relaxation within the excised lungs was

T
ð0Þ
1 ¼ 200� 20 s. Furthermore, the method enabled the first quan-

titative bulk gas phase measurement of 83Kr longitudinal relaxa-

tion as a function of O2 concentration. It was found that 83Kr is

approximately two orders of magnitude less sensitive to the pres-

ence of O2 than 129Xe.

6. Materials and methods

6.1. Optical pumping of 129Xe and 83Kr

The low-pressure batch-mode Rb-SEOP method used in these

experiments is similar to the one described in detail in Ref. [10].

In this work, 23.3 W of circularly polarized laser light was incident

at the front of the SEOP cell (Fig. 2a). All gases used were research

grade: Kr (99.995% pure; natural abundance, 11.5% 83Kr; Airgas,

Rednor, PA, USA), Xe (99.995% pure; natural abundance, 26.4%
129Xe; Nova Gas Technologies, Charleston, SC, USA), isotopically

enriched Kr (enriched to 99.925% 83Kr; Chemgas, Boulogne,

France), isotopically enriched Xe (99.995% pure; enriched to 83%
129Xe; Nova Gas Technologies, Charleston, SC, USA), and N2

(99.999% pure; Air Liquide, Coleshill, UK).

To ensure the quality of the SEOP cell at least four polarization

measurements of a standard mixture (5% Xe–95% N2 or 25% Kr–

75% N2 for xenon or krypton experiments respectively) were ac-

quired using an SEOP cell pressure of 230 ± 20 kPa before starting

experiments. If a polarization of less than 40% is observed for Xe

or 3.5% for Kr then the SEOP cell is replaced. To verify the SEOP cell

performance and attempt to prevent polarization fluctuations from

affecting the observed functional relationship, polarization values

at high SEOP cell pressure are taken at least four times at irregular

intervals during the experiment.

6.2. Extraction units

For Extraction Scheme 1, a pressure chamber was constructed

from an acrylic tube (length: 200 mm, inner diameter: 100 mm).

As shown in Fig. 2b, a latex balloon was placed inside the pressure

chamber and was connected to an acrylic screw cap that sealed the

body of the chamber (vacuum tested to 0.1 kPa, pressure tested to

300 kPa). The internal volume of the balloon was connected to

valve (A) through the screw cap via a small channel with mini-

mized internal volume.

For Extraction Scheme 2, a large volume piston pump unit was

constructed from an acrylic tube (length: 450 mm, inner diame-

ter: 58 mm, outer diameter: 70 mm) with acrylic screw caps at-

tached to the tubing and that were each fitted with an O-ring

that sealed the device (vacuum tested to 0.1 kPa, pressure tested

to 300 kPa). The extraction unit was encompassed by a solenoid

coil that produced a static magnetic field of B0 = 0.005 T that

aimed to reduce the relaxation of the hp 83Kr inside the extrac-

tion unit [36]. The extraction unit needed to attain vacuum

conditions of less than 0.2 kPa prior to hp gas extraction from

the SEOP cell and then compress the extracted hp gas to ambient

pressure. An O-ring seal equipped acrylic piston provided gas

tight isolation of the two compartments of the extraction unit.

The length of the piston was 150 mm to provide proper align-

ment but its particular shape, shown in Fig. 3a, reduced its weight

to minimize its inertia.

Extraction Scheme 2 required multiple steps as described in

Fig. 3b–e. Initially the piston was retracted by pressurizing Vext

with N2 while simultaneously pulling a vacuum on the back of

the piston (Fig. 3b). With the piston in its retracted position, the

extraction volume of the unit was Vmax
ext ¼ 790 cm3 and this volume

was evacuated to below 0.2 kPa (Fig. 3c). V ext is subsequently

opened to the SEOP cell to allow for gas transfer from the SEOP cell

(Fig. 3d). After 5 s, a pressure of approximately 6–13 kPa was

reached (depending on the SEOP pressure), however the pressure

equalization was only about 80% complete, allowing for a transfer

of approximately 3/4 of the hp gas from the SEOP cell. The incom-

plete transfer of hp gas was deemed acceptable to limit relaxation

in the chamber and gas lines. Hp gas was compressed by pressur-

izing the piston with >100 kPa of N2, leading to the scenario
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depicted in Fig. 3e. The extraction–compression unit was then

opened to either a detection cell for polarization measurements

or to the storage volume (VB) for lung MRI.

6.3. Spectroscopic experiments

Polarization measurements and T1 relaxation of either hp gas–

O2 mixtures in a bulk gas phase were conducted in a vertical bore

9.4 T superconducting magnet (Oxford Instruments, UK) equipped

with a Magritek Kea 2 spectrometer (Wellington, New Zealand)

using 15 mm custom build probes tuned to the resonance fre-

quency of 129Xe (110.56 MHz) and of 83Kr (15.38 MHz). T1 relaxa-

tion measurements in the excised lung were performed in a

vertical bore 9.4 T Bruker Avance III microimaging system using

a 25 mm 129Xe custom build birdcage probe tuned to 110.69 MHz.

6.4. Imaging protocol

MRI experiments were performed in a vertical bore 9.4 T Bruker

Avance III microimaging system. A custom build 25 mm birdcage

probe tuned to 110.69 MHz and a commercial 30 mm probe (Bru-

ker Corporation, Billerica, Massachusetts, USA) tuned to 15.40 MHz

were used for 129Xe or 83Kr imaging experiments, respectively.
129Xe images were acquired using a variable flip angle (VFA)

FLASH sequence [29] using 64 gradient increments in phase-

encoding dimension resulting in a total image acquisition time of

13.8 s. The resulting data size was 128 � 64 with the field of view

(FOV) of 46.9 � 30.0 mm2 in the frequency encoding and in the

phase encoding dimensions, respectively. An MRI image of a

4 mm central slice of the lung in coronal orientation was obtained

using sinc-shaped pulses with 1 ms in length and a variable ampli-

tude for each phase encoding gradient increment. A subsequent

non-slice selective image was obtained using rectangular pulses

with variable amplitudes during the same inhalation cycle.
83Kr image data were collected using VFA FLASH sequence with

32 phase encoding gradient increments resulting in the final data

size of 64 � 32. Variable amplitude 0.8 ms gaussian pulses or

2.0 ms sinc-shaped pulses were used in image acquisition. The

total acquisition time was either 0.57 s or 0.62 s depending on

the length of the used excitation pulse. The resulting image

length was either 51.0 mm or 50.9 mm in the frequency encoding

and 38.1 mm or 40.7 mm in the phase-encoding dimension,

respectively.

Data were processed using Prospa (v. 3.06; Magritek, New Zea-

land). The data were apodized in both dimensions using sine-bell

squared function prior to the image reconstruction further image

processing and analysis were performed with IGOR Pro (v 6.11,

Wavemetrics, USA).

6.5. Animal care and preparation

Male Sprague–Dawley rats (Charles River, Margate, UK) weigh-

ing 360–450 g were used in this study. These weights of rat were

chosen as they roughly corresponded to the maximum lung size

that would fit into the ventilation chamber (Fig. 8). Rats were hu-

manely euthanized by overdose of pentobarbital (Sigma–Aldrich

Ltd., Gillingham, UK) in accordance with A(SP)A 1986 (Animals

for Scientific Procedures Act 1986) and local animal welfare guide-

lines. Once death was confirmed the pulmonary system was

flushed with a heparin-solution (Wockhardt UK Ltd., Wrexham,

UK) via catheter inserted into the right ventricle or caudal vena

cava. This was followed by Dublecco’s phosphate buffer solution

(D-PBS, Sigma–Aldrich Ltd., Gillingham, UK) to remove remaining

blood from circulation. The lungs were inflated with around 3 ml

of air and the trachea clamped; then the lungs, heart, and connec-

tive tissue were extracted en bloc. After extraction the lung’s tra-

chea was cannulated and a syringe was used to breathe the lungs

to ensure that they did not leak. Lungs were stored in glucose solu-

tion (5% glucose in water, Baxter Healthcare Ltd., Thetford, UK),

chilled to approximately 280 K until needed.

6.6. Lung ventilation and gas delivery

Excised rat lungs were inserted into a custom-made, sealable,

ventilation chamber that filled the entire coil region. The ventila-

tion chamber and its operating procedures are described in detail

Fig. 8. Hp gas delivery to the lung ventilation chamber using the ambient pressure storage volume (VB). Note that Extraction Scheme 2 uses the same methodology. (a) Hp gas

is driven from Vext into the storage volume (VB) displacing the existing gas in VB that exhausts to ambient. (b) The inhalation syringe is pulled to produce a slight vacuum on

the glucose solution, forcing the lung to expand and to uptake hp gas from VB.
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in previous work [15]. Briefly, the trachea of the rat lung was cann-

ulated with an adaptor that was attached to the top of the ventila-

tion chamber. The ventilation chamber was filled to about 2/3 of its

total volume with a 5% glucose solution (Baxter Healthcare Ltd.,

Thetford, UK). Hp gas was delivered to the storage volume VB after

compression using one of the two Extraction Schemes described in

this work. When a volume was pulled on the inhalation syringe

pressure equalization forces the lungs to expand (Fig. 8). This acts

in a similar fashion to the thoracic diaphragm, as the expansion of

the lungs causes it to inhale gas from the volume VB.

6.7. Rubidium filters

Rubidium filters were made from 60 mm of Teflon tubing (out-

er-diameter = 9.4 mm, inner-diameter = 6.4 mm; Swagelok, War-

rington, UK) with 100 g of glass wool (Corning glass works,

Corning, NY, USA) loosely packed inside. Chemical indicator paper

(Whatman plc, Maidstone, UK) was used to check the pH value of

the 1.0 ml of distilled water used to wash the glass wool. The

resulting pH of the rubidium wash was pH 5.0.

6.8. O2 mixing with hp gas and relaxation measurements

After SEOP at 220 kPa, a transfer of 5 s in duration resulted in a

pressure of approximately 11 kPa of hp gas in Vext. Valves A + B

(Fig. 3a) were closed and the connecting lines were evacuated. A

selected pressure of O2 gas was then added to Vext and the connect-

ing lines were evacuated again. After a 5 s time delay that allowed

for mixing of the O2 with the hp gas, the mixture was delivered for

the MR measurements performed using Extraction Scheme 2.

All T1 data were obtained at ambient temperature using a pulse

sequence comprising of sixteen medium ðh ¼ 12
Þ flip angle r.f.

pulses evenly separated by time increment s. T1 relaxation values

were determined from the nonlinear least-square analysis of the

time dependence of the NMR signal intensity f(t) in the presence

of spin-destruction due to the r.f. pulses [39] according to:

f ðtÞ ¼ cosðht=sÞe�t=T1 ð7Þ
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