182 research outputs found

    Viable thermionic emission from graphene-covered metals

    Full text link
    Thermionic emission from monolayer graphene grown on representative transition metals, Ir and Ru, is characterized by low-energy electron microscopy (LEEM). Work functions were determined from the temperature dependence of the emission current and from the electron energy spectrum of emitted electrons. The high-temperature work function of the strongly interacting system graphene/Ru(0001) is sufficiently low, 3.3 \pm 0.1 eV, to have technological potential for large-area emitters that are spatially uniform, efficient, and chemically inert. The thermionic work functions of the less strongly interacting system graphene/Ir(111) are over 1 eV larger and vary substantially (0.4 eV) between graphene orientations rotated by 30{\deg}.Comment: Published in Applied Physics Letter

    Oxidation of graphene on metals

    Full text link
    We use low-energy electron microscopy to investigate how graphene is removed from Ru(0001) and Ir(111) by reaction with oxygen. We find two mechanisms on Ru(0001). At short times, oxygen reacts with carbon monomers on the surrounding Ru surface, decreasing their concentration below the equilibrium value. This undersaturation causes a flux of carbon from graphene to the monomer gas. In this initial mechanism, graphene is etched at a rate that is given precisely by the same non-linear dependence on carbon monomer concentration that governs growth. Thus, during both growth and etching, carbon attaches and detaches to graphene as clusters of several carbon atoms. At later times, etching accelerates. We present evidence that this process involves intercalated oxygen, which destabilizes graphene. On Ir, this mechanism creates observable holes. It also occurs mostly quickly near wrinkles in the graphene islands, depends on the orientation of the graphene with respect to the Ir substrate, and, in contrast to the first mechanism, can increase the density of carbon monomers. We also observe that both layers of bilayer graphene islands on Ir etch together, not sequentially.Comment: 15 pages, 10 figures. Manuscript revised to improve discussion, following referee comments. Accepted for publication in Journal of Physical Chemistry C, Feb. 11, 201

    An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy

    Full text link
    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Although only five years have elapsed since the technique was first introduced, it has made rapid progress in demonstrating high-resolution threedimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a lifescience sample by XDM with a given resolution. We conclude that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered by reports in the literature. The tentative conclusion of this study is that XDM should be able to image frozen-hydrated protein samples at a resolution of about 10 nm with "Rose-criterion" image quality.Comment: 9 pages, 4 figure

    Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    Full text link
    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric-metal-dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the Tc value in layered high-Tc cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one- dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided.Comment: 22 pages, 14 figures and 2 table

    90Y-clivatuzumab tetraxetan with or without low-dose gemcitabine: A phase Ib study in patients with metastatic pancreatic cancer after two or more prior therapies

    Get PDF
    AbstractBackgroundFor patients with metastatic pancreatic adenocarcinoma, there are no approved or established treatments beyond the 2nd line. A Phase Ib study of fractionated radioimmunotherapy was undertaken in this setting, administering 90Y-clivatuzumab tetraxetan (yttrium-90-radiolabelled humanised antibody targeting pancreatic adenocarcinoma mucin) with or without low radiosensitising doses of gemcitabine.MethodsFifty-eight patients with three (2–7) median prior treatments were treated on Arm A (N=29, 90Y-clivatuzumab tetraxetan, weekly 6.5mCi/m2doses×3, plus gemcitabine, weekly 200mg/m2 doses×4 starting 1week earlier) or Arm B (N=29, 90Y-clivatuzumab tetraxetan alone, weekly 6.5mCi/m2doses×3), repeating cycles after 4-week delays. Safety was the primary endpoint; efficacy was also evaluated.ResultsCytopaenias (predominantly transient thrombocytopenia) were the only significant toxicities. Fifty-three patients (27 Arm A, 26 Arm B, 91% overall) completed ⩾1 full treatment cycles, with 23 (12 Arm A, 11 Arm B; 40%) receiving multiple cycles, including seven (6 Arm A, 1 Arm B; 12%) given 3–9 cycles. Two patients in Arm A had partial responses by RECIST criteria. Kaplan–Meier overall survival (OS) appeared improved in Arm A versus B (hazard ratio [HR] 0.55, 95% CI: 0.29–0.86; P=0.017, log-rank) and the median OS for Arm A versus Arm B increased to 7.9 versus 3.4months with multiple cycles (HR 0.32, P=0.004), including three patients in Arm A surviving >1year.ConclusionsClinical studies of 90Y-clivatuzumab tetraxetan combined with low-dose gemcitabine appear feasible in metastatic pancreatic cancer patients beyond 2nd line and a Phase III trial of this combination is now underway in this setting

    In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth.

    Get PDF
    The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.L.L.P. acknowledges funding from Area di Ricerca Scientifica e Tecnologica of Trieste and from MIUR through Progetto Strategico NFFA. C.A. acknowledges support from CNR through the ESF FANAS project NOMCIS. C.A. and C.C. acknowledge financial support from MIUR (PRIN 2010-2011 nº 2010N3T9M4). S.B. acknowledges funding from ICTP TRIL program. S.H. acknowledges funding from ERC grant InsituNANO (n°279342). R.S.W. acknowledges funding from EPSRC (Doctoral training award), and the Nano Science & Technology Doctoral Training Centre Cambridge (NanoDTC). The help of C. Dri and F. Esch (design) and P. Bertoch and F. Salvador (manufacturing) in the realization of the high temperature STM sample holder is gratefully acknowledged. We acknowledge the Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for provision of synchrotron radiation at the ISISS beamline and we thank the BESSY staff for continuous support of our experiments.This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/nn402927q

    Interdependency of subsurface carbon distribution and graphene-catalyst interaction.

    Get PDF
    The dynamics of the graphene-catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene-catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10(-6)-10(-3) mbar). A further hydrocarbon pressure increase (to ∼10(-1) mbar) leads to weakening of the graphene-Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature.R.S.W. acknowledges a Research Fellowship from St. John’s College, Cambridge. S.H. acknowledges funding from ERC grant InsituNANO (No. 279342) and EPSRC under grant GRAPHTED (Ref. EP/K016636/1). We acknowledge the Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for provision of synchrotron radiation at the ISISS beamline and we thank the BESSY staff for continuous support of our experiments. This research was partially supported by the EU FP7 Work Programme under grant Graphene Flagship (No. 604391). PRK acknowledges funding the Cambridge Commonwealth Trust. H.A. and C.B. acknowledge J.-Y. Raty and B. Legrand for fruitful discussions.This is the final published version. It's also available from ACS at http://pubs.acs.org/doi/abs/10.1021/ja505454v
    • …
    corecore