108 research outputs found
Orexin receptors exert a neuroprotective effect in Alzheimer's disease (AD) via heterodimerization with GPR103
Orexins are neuropeptides that regulate the sleep-wake cycle and feeding behaviour. QRFP is a newly discovered neuropeptide which exerts similar orexigenic activity, thus playing an important role in energy homeostasis and regulation of appetite. The exact expression and signalling characteristics and physiological actions of QRFP and its receptor GPR103 are poorly understood. AlzheimerĂą âŹâą s disease (AD) patients experience increased nocturnal activity, excessive daytime sleepiness, and weight loss. We hypothesised therefore that orexins and QRFP might be implicated in the pathophysiology of AD. We report that the down-regulation of hippocampal orexin receptors (OXRs) and GPR103 particularly in the cornu ammonis (CA) subfield from AD patients suffering from early onset familial AD (EOFAD) and late onset familial AD (LOAD). Using an in vitro model we demonstrate that this downregulation is due to to AÎČ-plaque formation and tau hyper-phosphorylation. Transcriptomics revealed a neuroprotective role for both orexins and QRFP. Finally we provide conclusive evidence using BRET and FRET that OXRs and GPR103 form functional hetero-dimers to exert their effects involving activation of ERK 1/2. Pharmacological intervention directed at the orexigenic system may prove to be an attractive avenue towards the discovery of novel therapeutics for diseases such as AD and improving neuroprotective signalling pathways
Relationship Between Nutritional Habits and Hair Calcium Levels in Young Women
The present study was conducted to investigate whether hair calcium levels are related to nutritional habits, selected status parameters, and life-style factors in young women. Eighty-five healthy female students neither pregnant nor lactating, using no hair dyes or permanents were recruited for the study. Food consumption data, including fortified products and dietary supplements were collected with 4-day records. The calcium levels in hair and serum were analyzed by atomic absorption spectroscopy. Serum osteocalcin and the C-terminal telopeptide of type I collagen were assayed by ELISA. The women were divided into four groups according to their total vitamin D and calcium intakes and hair calcium levels. At adequate calcium intake and comparable serum bone biomarker levels, supplemental vitamin D increased the hair calcium levels. On the other hand, at lower than estimated adequate requirement of vitamin D intake the hair calcium levels were comparable in women with low calcium intakes but consuming high amounts of meat products or those whose diets were rich in dairy products, possibly due to homeostatic mechanisms. Elevated hair calcium was seen in 25% of subjects and could not be related to nutritional or life-style factors. The results show that the hair calcium levels were weakly related to the quality of diet, with some synergistic interactions between nutrients, especially vitamin D and magnesium
Orexins/Hypocretins Acting at Gi Protein-Coupled OX2 Receptors Inhibit Cyclic AMP Synthesis in the Primary Neuronal Cultures
Orexins A and B are newly discovered neuropeptides with pleiotropic activity. They signal through two G protein-coupled receptors: OX1 and OX2. In this study, we examined the expression of orexin receptors and effects of the receptorsâ activation on cyclic AMP formation in the primary neuronal cell cultures from rat cerebral cortex. Both types of orexin receptors were expressed in rat cortical neurons; the level of OX2R was markedly higher compared to OX1R. Orexin A (an agonist of OX1R and OX2R) and [Ala11-D-Leu15]orexin B (a selective agonist of OX2R) did not affect basal cyclic AMP formation in the primary neuronal cell cultures. Both peptides (0.001â1Â ÎŒM) inhibited, in a concentration-dependent manner and IC50 values in low nanomolar range, the increase in the nucleotide production evoked by forskolin (1Â ÎŒM; a direct activator of adenylyl cyclase), pituitary adenylate cyclase-activating polypeptide (PACAP27; 0.1Â ÎŒM), and vasoactive intestinal peptide (VIP; 3Â ÎŒM). Effects of orexin A on forskolin-, PACAP27-, and VIP-stimulated cyclic AMP synthesis were blocked by TCS OX2 29 (a selective antagonist of OX2R), and unaffected by SB 408124 (a selective antagonist of OX1R). Pretreatment of neuronal cell cultures with pertussis toxin (PTX) abolished the inhibitory action of orexin A on forskolin- and PACAP-stimulated cyclic AMP accumulation. It is suggested that in cultured rat cortical neurons orexins, acting at OX2 receptors coupled to PTX-sensitive Gi protein, inhibit cyclic AMP synthesis
The Baryonic Collapse Efficiency of Galaxy Groups in the RESOLVE and ECO Surveys
We examine the z = 0 group-integrated stellar and cold baryonic (stars + cold atomic gas) mass functions (group SMF and CBMF) and the baryonic collapse efficiency (group cold baryonic to dark matter halo mass ratio) using the RESOLVE and ECO survey galaxy group catalogs and a galform semi-analytic model (SAM) mock catalog. The group SMF and CBMF fall off more steeply at high masses and rise with a shallower low-mass slope than the theoretical halo mass function (HMF). The transition occurs at group-integrated cold baryonic mass M_coldbary ~ 10^11 Msun. The SAM, however, has significantly fewer groups at the transition mass ~ 10^11 Msun and a steeper low-mass slope than the data, suggesting that feedback is too weak in low-mass halos and conversely too strong near the transition mass. Using literature prescriptions to include hot halo gas and potential unobservable galaxy gas produces a group BMF with slope similar to the HMF even below the transition mass. Its normalization is lower by a factor of ~2, in agreement with estimates of warm-hot gas making up the remaining difference. We compute baryonic collapse efficiency with the halo mass calculated two ways, via halo abundance matching (HAM) and via dynamics (extended all the way to three-galaxy groups using stacking). Using HAM, we find that baryonic collapse efficiencies reach a flat maximum for groups across the halo mass range of M_halo ~ 10^11.4-12 Msun, which we label "nascent groups." Using dynamics, however, we find greater scatter in baryonic collapse efficiencies, likely indicating variation in group hot-to-cold baryon ratios. Similarly, we see higher scatter in baryonic collapse efficiencies in the SAM when using its true groups and their group halo masses as opposed to friends-of-friends groups and HAM masses
Angular Momentum of Early- and Late-type Galaxies: Nature or Nurture?
We investigate the origin, the shape, the scatter, and the cosmic evolution
in the observed relationship between specific angular momentum and
the stellar mass in early-type (ETGs) and late-type galaxies (LTGs).
Specifically, we exploit the observed star-formation efficiency and chemical
abundance to infer the fraction f_\rm inf of baryons that infall toward the
central regions of galaxies where star formation can occur. We find f_\rm
inf\approx 1 for LTGs and for ETGs with an uncertainty of about
dex, consistent with a biased collapse. By comparing with the locally
observed vs. relations for LTGs and ETGs we estimate the
fraction of the initial specific angular momentum associated to the
infalling gas that is retained in the stellar component: for LTGs we find
, in line with the classic disc formation
picture; for ETGs we infer , that can be
traced back to a evolution via dry mergers. We also show that the
observed scatter in the vs. relation for both galaxy
types is mainly contributed by the intrinsic dispersion in the spin parameters
of the host dark matter halo. The biased collapse plus mergers scenario implies
that the specific angular momentum in the stellar components of ETG progenitors
at is already close to the local values, in pleasing agreement with
observations. All in all, we argue such a behavior to be imprinted by nature
and not nurtured substantially by the environment
An update on molecular cat allergens: Fel d 1 and what else? Chapter 1: Fel d 1, the major cat allergen
Background: Cats are the major source of indoor inhalant allergens after house dust mites. The global incidence of cat allergies is rising sharply, posing a major public health problem. Ten cat allergens have been identified. The major allergen responsible for symptoms is Fel d 1, a secretoglobin and not a lipocalin, making the cat a special case among mammals.
Main body: Given its clinical predominance, it is essential to have a good knowledge of this allergenic fraction, including its basic structure, to understand the new exciting diagnostic and therapeutic applications currently in development. The recent arrival of the component-resolved diagnosis, which uses molecular allergens, represents a unique opportunity to improve our understanding of the disease. Recombinant Fel d 1 is now available for in vitro diagnosis by the anti-Fel d 1 specific IgE assay. The first part of the review will seek to describe the recent advances related to Fel d 1 in terms of positive diagnosis and assessment of disease severity. In daily practice, anti-Fel d 1 IgE tend to replace those directed against the overall extract but is this attitude justified? We will look at the most recent arguments to try to answer this question. In parallel, a second revolution is taking place thanks to molecular engineering, which has allowed the development of various forms of recombinant Fel d 1 and which seeks to modify the immunomodulatory properties of the molecule and thus the clinical history of the disease via various modalities of anti-Fel d 1-specific immunotherapy. We will endeavor to give a clear and practical overview of all these trends
The CLIC Potential for New Physics
The Compact Linear Collider (CLIC) is a mature option for the future of high
energy physics. It combines the benefits of the clean environment of
colliders with operation at high centre-of-mass energies, allowing to probe
scales beyond the reach of the Large Hadron Collider (LHC) for many scenarios of new physics. This places the CLIC project at a privileged spot in between the precision and energy frontiers, with capabilities that will significantly extend knowledge on both fronts at the end of the LHC era. In this report we review and revisit the potential of CLIC to search, directly and indirectly, for physics beyond the Standard Model
- âŠ