1,234 research outputs found

    Investigation of the limits of nanoscale filopodial interactions

    Get PDF
    Mesenchymal stem cells are sensitive to changes in feature height, order and spacing. We had previously noted that there was an inverse relationship between osteoinductive potential and feature height on 15-, 55- and 90 nm-high titania nanopillars, with 15 nm-high pillars being the most effective substrate at inducing osteogenesis of human mesenchymal stem cells. The osteoinductive effect was somewhat diminished by decreasing the feature height to 8 nm, however, which suggested that there was a cut-off point, potentially associated with a change in cell–nanofeature interactions. To investigate this further, in this study, a scanning electron microscopy/three-dimensional scanning electron microscopy approach was used to examine the interactions between mesenchymal stem cells and the 8 and 15 nm nanopillared surfaces. As expected, the cells adopted a predominantly filopodial mode of interaction with the 15 nm-high pillars. Interestingly, fine nanoscale membrane projections, which we have termed ‘nanopodia,’ were also employed by the cells on the 8 nm pillars, and it seems that this is analogous to the cells ‘clinging on with their fingertips’ to this scale of features

    Postglacial peatland vegetation succession in Store Mosse bog, south-central Sweden : An exploration of factors driving species change

    Get PDF
    Boreal peatlands are facing significant changes in response to a warming climate. Sphagnum mosses are key species in these ecosystems and contribute substantially to carbon sequestration. Understanding the factors driving vegetation changes on longer time scales is therefore of high importance, yet challenging since species changes are typically affected by a range of internal and external processes acting simultaneously within the system. This study presents a high-resolution macrofossil analysis of a peat core from Store Mosse bog (south-central Sweden), dating back to nearly 10 000 cal. a BP. The aim is to identify factors driving species changes on multidecadal to millennial timescales considering internal autogenic, internal biotic and external allogenic processes. A set of independent proxy data was used as a comparison framework to estimate changes in the bog and regional effective humidity, nutrient input and cold periods. We found that Store Mosse largely follows the expected successional pathway for a boreal peatland (i.e. lake -> fen -> bog). However, the system has also been affected by other interlinked factors. Of interest, we note that external nutrient input (originating from dust deposition and climate processes) has had a negative effect on Sphagnum while favouring vascular plants, and increased fire activity (driven by allogenic and autogenic factors) typically caused post-fire, floristic wet shifts. These effects interactively caused a floristic reversal and near disappearance of a once-established Sphagnum community, during which climate acted as an indirect driver. Overall, this study highlights that the factors driving vegetation change within the peatland are multiple and complex. Consideration of the role of interlinked factors on Sphagnum is crucial for an improved understanding of the drivers of species change on short- and long-term scales.Peer reviewe

    Stapling and Section of the Nasogastric Tube during Sleeve Gastrectomy: How to Prevent and Recover?

    Get PDF
    Bariatric surgery has become an integral part of morbid obesity treatment with well-defined indications. Some complications, specific or not, due to laparoscopic sleeve gastrectomy (LSG) procedure have recently been described. We report a rare complication unpublished to date: a nasogastric section during great gastric curve stapling. A 44-year-old woman suffered of severe obesity (BMI 36.6 kg/m2) with failure of medical treatments for years. According to already published technique, a LSG was performed. Six hours postoperatively, a nurse removed the nasogastric tube according to the local protocol and the nasogastric tube was abnormally short, with staples at its extremity. Surgery was performed with peroperative endoscopy. In conclusion, this is the first publication of a nasogastric section during LSG. Therefore we report this case and propose a solution to prevent its occurrence. To avoid this kind of accident, we now systematically insert the nasogastric tube by mouth through a Guedel cannula. Then, to insert the calibrating bougie, we entirely withdraw the nasogastric tube

    Is the Roux Limb a Determinant for Meal Size After Gastric Bypass Surgery?

    Get PDF
    The Roux-Y gastric bypass (RYGBP) is an effective weight-reducing procedure but the involved mechanisms of action are obscure. The Roux limb is the intestinal segment that following surgery is the primary recipient for food intake. The aims of the study were to explore the mechanosensory and biomechanical properties of the Roux limb and to make correlations with preferred meal size. Ten patients participated and were examined preoperatively, 6 weeks and 1 year after RYGBP. Each subject ingested unrestricted amounts of a standardized meal and the weight of the meal was recorded. On another study day, the Roux limb was subjected to gradual distension by the use of an intraluminal balloon. Luminal volume–pressure relationships and thresholds for induction of sensations were monitored. At 6 weeks and 1 year post surgery, the subjects had reduced their meal sizes by 62% and 41% (medians), respectively, compared to preoperative values. The thresholds for eliciting distension-induced sensations were strongly and negatively correlated to the preferred meal size. Intraluminal pressure during Roux limb distension, both at low and high balloon volumes, correlated negatively to the size of the meal that the patients had chosen to eat. The results suggest that the Roux limb is an important determinant for regulating food intake after Roux-Y bypass bariatric surgery

    The International Prevalence Study on Physical Activity: results from 20 countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical activity (PA) is one of the most important factors for improving population health, but no standardised systems exist for international surveillance. The International Physical Activity Questionnaire (IPAQ) was developed for international surveillance. The purpose of this study was a comparative international study of population physical activity prevalence across 20 countries.</p> <p>Methods</p> <p>Between 2002–2004, a standardised protocol using IPAQ was used to assess PA participation in 20 countries [total N = 52,746, aged 18–65 years]. The median survey response rate was 61%. Physical activity levels were categorised as "low", "moderate" and "high". Age-adjusted prevalence estimates are presented by sex.</p> <p>Results</p> <p>The prevalence of "high PA" varied from 21–63%; in eight countries high PA was reported for over half of the adult population. The prevalence of "low PA" varied from 9% to 43%. Males more frequently reported high PA than females in 17 of 20 countries. The prevalence of low PA ranged from 7–41% among males, and 6–49% among females. Gender differences were noted, especially for younger adults, with males more active than females in most countries. Markedly lower physical activity prevalence (10% difference) with increasing age was noted in 11 of 19 countries for males, but only in three countries for women. The ways populations accumulated PA differed, with some reporting mostly vigorous intensity activities and others mostly walking.</p> <p>Conclusion</p> <p>This study demonstrated the feasibility of international PA surveillance, and showed that IPAQ is an acceptable surveillance instrument, at least within countries. If assessment methods are used consistently over time, trend data will inform countries about the success of their efforts to promote physical activity.</p

    Performance of polyethyleneimine–silica adsorbent for post-combustion CO2 capture in a bubbling fluidized bed

    Get PDF
    The high performance of polyethyleneimine (PEI)-based solid adsorbent for CO2 capture has been well recognized in thermogravimetric analysis (TGA) and small-scale fixed bed reactors through the measurements of their equilibrium capacities but has not been really demonstrated on larger scales towards practical utilization. In the present study, a laboratory-scale bubbling fluidized bed reactor loaded with a few kg adsorbent is used to evaluate the adsorption performance of PEI–silica adsorbent under different working conditions including with/without the presence of moisture, different gas–solid contact times, initial bed temperatures, and CO2 partial pressures. The adsorption capacities have shown a clear degradation tendency under dry condition. However, they can be stabilized at a high level of 10.6–11.1% w/w over 60 cycles if moisture (ca. 8.8 vol%) is present in the gas flow during adsorption and desorption. Breakthrough capacities can be stabilized at the level of 7.6–8.2% w/w with the gas–solid contact time of 13 s. The adsorption capacities for the simulated flue gases containing 5% CO2 are only slightly lower than those for the simulated flue gases containing 15% CO2, indicating that the PEI–silica adsorbent is suitable for CO2 capture from flue gases of both coal-fired and natural gas-fired combined cycle power plants. The exothermal heat of adsorption is estimated by the energy balance in the fluidized bed reactor and found to be close (within 10%) to the measured value by TG-DSC. The regeneration heat for the as prepared PEI–silica adsorbent is found to be 2360 kJ/kgCO2 assuming 75% recovery of sensible heat which is well below the values of 3900–4500 kJ/kgCO2 for a typical MEA scrubbing process with 90% recovery of sensible heat
    corecore