2,308 research outputs found

    Characteristics and possible functions of mitochondrial Ca2+ transport mechanisms

    Get PDF
    AbstractMitochondria produce around 92% of the ATP used in the typical animal cell by oxidative phosphorylation using energy from their electrochemical proton gradient. Intramitochondrial free Ca2+ concentration ([Ca2+]m) has been found to be an important component of control of the rate of this ATP production. In addition, [Ca2+]m also controls the opening of a large pore in the inner mitochondrial membrane, the permeability transition pore (PTP), which plays a role in mitochondrial control of programmed cell death or apoptosis. Therefore, [Ca2+]m can control whether the cell has sufficient ATP to fulfill its functions and survive or is condemned to death. Ca2+ is also one of the most important second messengers within the cytosol, signaling changes in cellular response through Ca2+ pulses or transients. Mitochondria can also sequester Ca2+ from these transients so as to modify the shape of Ca2+ signaling transients or control their location within the cell. All of this is controlled by the action of four or five mitochondrial Ca2+ transport mechanisms and the PTP. The characteristics of these mechanisms of Ca2+ transport and a discussion of how they might function are described in this paper

    Quantized algebras of functions on homogeneous spaces with Poisson stabilizers

    Full text link
    Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0<q<1. We study a quantization C(G_q/K_q) of the algebra of continuous functions on G/K. Using results of Soibelman and Dijkhuizen-Stokman we classify the irreducible representations of C(G_q/K_q) and obtain a composition series for C(G_q/K_q). We describe closures of the symplectic leaves of G/K refining the well-known description in the case of flag manifolds in terms of the Bruhat order. We then show that the same rules describe the topology on the spectrum of C(G_q/K_q). Next we show that the family of C*-algebras C(G_q/K_q), 0<q\le1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra \C[G/K]. Finally, extending a result of Nagy, we show that C(G_q/K_q) is canonically KK-equivalent to C(G/K).Comment: 23 pages; minor changes, typos correcte

    Quantum planes and quantum cylinders from Poisson homogeneous spaces

    Get PDF
    Quantum planes and a new quantum cylinder are obtained as quantization of Poisson homogeneous spaces of two different Poisson structures on classical Euclidean group E(2).Comment: 13 pages, plain Tex, no figure

    Percolation phenomena of calcium bis(2-ethylhexyl) sulfosuccinate water - in - oil microemulsions by dielectric spectroscopy

    Get PDF

    The first products made in space: Monodisperse latex particles

    Get PDF
    The preparation of large particle size 3 to 30 micrometer monodisperse latexes in space confirmed that original rationale unequivocally. The flight polymerizations formed negligible amounts of coagulum as compared to increasing amounts for the ground-based polymerizations. The number of offsize large particles in the flight latexes was smaller than in the ground-based latexes. The particle size distribution broadened and more larger offsize particles were formed when the polymerizations of the partially converted STS-4 latexes were completed on Earth. Polymerization in space also showed other unanticipated advantages. The flight latexes had narrower particle size distributions than the ground-based latexes. The particles of the flight latexes were more perfect spheres than those of the ground-based latexes. The superior uniformity of the flight latexes was confirmed by the National Bureau of Standards acceptance of the 10 micrometer STS-6 latex and the 30 micrometer STS-11 latexes as Standard Reference Materials, the first products made in space for sale on Earth. The polymerization rates in space were the same as those on Earth within experimental error. Further development of the ground-based polymerization recipes gave monodisperse particles as large as 100 micrometer with tolerable levels of coagulum, but their uniformity was significantly poorer than the flight latexes. Careful control of the polymerization parameters gave uniform nonspherical particles: symmetrical and asymmetrical doublets, ellipsoids, egg-shaped, ice cream cone-shaped, and popcorn-shaped particles

    Magnetic Leviation System Design and Implementation for Wind Tunnel Application

    Get PDF
    This paper presents recent work in magnetic suspension wind tunnel development in National Cheng Kung University. In this phase of research, a control-based study is emphasized to implement a robust control system into the experimental system under study. A ten-coil 10 cm x 10 cm magnetic suspension wind tunnel is built using a set of quadrant detectors for six degree of freedom control. To achieve the attitude control of suspended model with different attitudes, a spacial electromagnetic field simulation using OPERA 3D is studied. A successful test for six degree of freedom control is demonstrated in this paper

    Ballistic Annihilation Kinetics: The Case of Discrete Velocity Distributions

    Full text link
    The kinetics of the annihilation process, A+A0A+A\to 0, with ballistic particle motion is investigated when the distribution of particle velocities is {\it discrete}. This discreteness is the source of many intriguing phenomena. In the mean field limit, the densities of different velocity species decay in time with different power law rates for many initial conditions. For a one-dimensional symmetric system containing particles with velocity 0 and ±1\pm 1, there is a particular initial state for which the concentrations of all three species as decay as t2/3t^{-2/3}. For the case of a fast ``impurity'' in a symmetric background of ++ and - particles, the impurity survival probability decays as exp(const.×ln2t)\exp(-{\rm const.}\times \ln^2t). In a symmetric 4-velocity system in which there are particles with velocities ±v1\pm v_1 and ±v2\pm v_2, there again is a special initial condition where the two species decay at the same rate, t^{-\a}, with \a\cong 0.72. Efficient algorithms are introduced to perform the large-scale simulations necessary to observe these unusual phenomena clearly.Comment: 18 text pages, macro file included, hardcopy of 9 figures available by email request to S

    SPECTRAL CORRECTION FACTORS FOR CONVENTIONAL NEUTRON DOSE METERS USED IN HIGH-ENERGY NEUTRON ENVIRONMENTS-IMPROVED AND EXTENDED RESULTS BASED ON A COMPLETE SURVEY OF ALL NEUTRON SPECTRA IN IAEA-TRS-403

    Get PDF
    This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (En > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252Cf, 241Am-Be and 239Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6”−9”) are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces

    Impurity Band Conduction in a High Temperature Ferromagnetic Semiconductor

    Full text link
    The band structure of a prototypical dilute ferromagnetic semiconductor, Ga1x_{1-x}Mnx_{x}As, is studied across the phase diagram via optical spectroscopy. We prove that the Fermi energy (EFE_{F}) resides in a Mn induced impurity band (IB). This conclusion is based upon careful analysis of the frequency and temperature dependence of the optical conductivity (σ1(ω,T)\sigma_{1}(\omega,T)). From our analysis of σ1(ω,T)\sigma_{1}(\omega,T) we infer a large effective mass (mm^*) of the carriers, supporting the view that conduction occurs in an IB. Our results also provide useful insights into the transport properties of Mn-doped GaAs.Comment: 4 pages, 4 figure
    corecore