299 research outputs found

    Managing extension staff: Two experiments in Kenya

    Get PDF
    This paper focusses on techniques for managing agricultural extension staff. A system of staff meetings, recording and reporting is described, which was tested in the Mbere Special Rural Development Programme area. The purpose of this system was to provide closer supervision of the routine activities of agricultural extension staff, and its achievements and limitations'in meeting this goal are discussed here. A system of inservice training and planning workshops associated: with new and/or more comprehensive extension activities was tested in Kisii and Homa Bay. This is basically a management system for extension planning which provides a tool for the effective participation of grassroots level field staff. The two management systems are considered complementary, and it is proposed that they be combined to form a useful management tool for agricultural extension

    Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain

    Get PDF
    Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer

    Foliar lead uptake by lettuce exposed to atmospheric fallouts

    Get PDF
    Metal uptake by plants occurs by soilβˆ’root transfer but also by direct transfer of contaminants from the atmosphere to the shoots. This second pathway may be particularly important in kitchen gardens near industrial plants. The mechanisms of foliar uptake of lead by lettuce (Lactuca sativa) exposed to the atmospheric fallouts of a lead-recycling plant were studied. After 43 days of exposure, the thoroughly washed leaves contained 335 Β± 50 mg Pb kgβˆ’1 (dry weight). Micro-X-ray fluorescence mappings evidenced Pb-rich spots of a few hundreds of micrometers in diameter located in necrotic zones. These spots were more abundant at the base of the central nervure. Environmental scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that smaller particles (a few micrometers in diameter) were also present in other regions of the leaves, often located beneath the leaf surface. In addition, submicrometric particles were observed inside stomatal openings. Raman microspectrometry analyses of the leaves identified smelter-originated Pb minerals but also secondary phases likely resulting from the weathering of original particles. On the basis of these observations, several pathways for foliar lead uptake are discussed. A better understanding of these mechanisms may be of interest for risk assessment of population exposure to atmospheric metal contamination

    Decorin and TGF-Ξ²(1 )polymorphisms and development of COPD in a general population

    Get PDF
    BACKGROUND: Decorin, an extracellular matrix (ECM) proteoglycan, and TGF-Ξ²(1 )are both involved in lung ECM turnover. Decorin and TGF-Ξ²(1 )expression are decreased respectively increased in COPD lung tissue. Interestingly, they act as each other's feedback regulator. We investigated whether single nucleotide polymorphisms (SNPs) in decorin and TGF-Ξ²(1 )underlie accelerated decline in FEV(1 )and development of COPD in the general population. METHODS: We genotyped 1390 subjects from the Vlagtwedde/Vlaardingen cohort. Lung function was measured every 3 years for a period of 25 years. We tested whether five SNPs in decorin (3'UTR and four intron SNPs) and three SNPs in TGF-Ξ²(1 )(3'UTR rs6957, C-509T rs1800469 and Leu10Pro rs1982073), and their haplotypes, were associated with COPD (last survey GOLD stage = II). Linear mixed effects models were used to analyze genotype associations with FEV(1 )decline. RESULTS: We found a significantly higher prevalence of carriers of the minor allele of the TGF-Ξ²(1 )rs6957 SNP (p = 0.001) in subjects with COPD. Additionally, we found a significantly lower prevalence of the haplotype with the major allele of rs6957 and minor alleles for rs1800469 and rs1982073 SNPs in TGF-Ξ²(1 )in subjects with COPD (p = 0.030), indicating that this association is due to the rs6957 SNP. TGF-Ξ²(1 )SNPs were not associated with FEV(1 )decline. SNPs in decorin, and haplotypes constructed of both TGF-Ξ²(1 )and decorin SNPs were not associated with development of COPD or with FEV(1 )decline. CONCLUSION: Our study shows for the first time that SNPs in decorin on its own or in interaction with SNPs in TGF-Ξ²(1 )do not underlie the disturbed balance in expression between these genes in COPD. TGF-Ξ²(1 )SNPs are associated with COPD, yet not with accelerated FEV(1 )decline in the general population

    Collagen-Binding Peptidoglycans Inhibit MMP Mediated Collagen Degradation and Reduce Dermal Scarring

    Get PDF
    Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13) mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA) vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM) analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing

    The other Higgses, at resonance, in the Lee-Wick extension of the Standard Model

    Get PDF
    Within the framework of the Lee Wick Standard Model (LWSM) we investigate Higgs pair production gg→h0h0gg \to h_0 h_0, gg→h0p~0gg \to h_0 \tilde p_0 and top pair production gg→tˉtgg \to \bar tt at the Large Hadron Collider (LHC), where the neutral particles from the Higgs sector (h0h_0, h~0\tilde h_0 and p~0\tilde p_0) appear as possible resonant intermediate states. We investigate the signal gg→h0h0→bˉbγγgg \to h_0 h_0 \to \bar b b \gamma \gamma and we find that the LW Higgs, depending on its mass-range, can be seen not long after the LHC upgrade in 2012. More precisely this happens when the new LW Higgs states are below the top pair threshold. In gg→tˉtgg \to \bar tt the LW states, due to the wrong-sign propagator and negative width, lead to a dip-peak structure instead of the usual peak-dip structure which gives a characteristic signal especially for low-lying LW Higgs states. We comment on the LWSM and the forward-backward asymmetry in view of the measurement at the TeVatron. Furthermore, we present a technique which reduces the hyperbolic diagonalization to standard diagonalization methods. We clarify issues of spurious phases in the Yukawa sector.Comment: 36 pages, 16 figures, 3 table

    Losartan Slows Pancreatic Tumor Progression and Extends Survival of SPARC-Null Mice by Abrogating Aberrant TGFΞ² Activation

    Get PDF
    Pancreatic adenocarcinoma, a desmoplastic disease, is the fourth leading cause of cancer-related death in the Western world due, in large part, to locally invasive primary tumor growth and ensuing metastasis. SPARC is a matricellular protein that governs extracellular matrix (ECM) deposition and maturation during tissue remodeling, particularly, during wound healing and tumorigenesis. In the present study, we sought to determine the mechanism by which lack of host SPARC alters the tumor microenvironment and enhances invasion and metastasis of an orthotopic model of pancreatic cancer. We identified that levels of active TGFΞ²1 were increased significantly in tumors grown in SPARC-null mice. TGFΞ²1 contributes to many aspects of tumor development including metastasis, endothelial cell permeability, inflammation and fibrosis, all of which are altered in the absence of stromal-derived SPARC. Given these results, we performed a survival study to assess the contribution of increased TGFΞ²1 activity to tumor progression in SPARC-null mice using losartan, an angiotensin II type 1 receptor antagonist that diminishes TGFΞ²1 expression and activation in vivo. Tumors grown in SPARC-null mice progressed more quickly than those grown in wild-type littermates leading to a significant reduction in median survival. However, median survival of SPARC-null animals treated with losartan was extended to that of losartan-treated wild-type controls. In addition, losartan abrogated TGFΞ² induced gene expression, reduced local invasion and metastasis, decreased vascular permeability and altered the immune profile of tumors grown in SPARC-null mice. These data support the concept that aberrant TGFΞ²1-activation in the absence of host SPARC contributes significantly to tumor progression and suggests that SPARC, by controlling ECM deposition and maturation, can regulate TGFΞ² availability and activation

    Aging Alters Functionally Human Dermal Papillary Fibroblasts but Not Reticular Fibroblasts: A New View of Skin Morphogenesis and Aging

    Get PDF
    Understanding the contribution of the dermis in skin aging is a key question, since this tissue is particularly important for skin integrity, and because its properties can affect the epidermis. Characteristics of matched pairs of dermal papillary and reticular fibroblasts (Fp and Fr) were investigated throughout aging, comparing morphology, secretion of cytokines, MMPs/TIMPs, growth potential, and interaction with epidermal keratinocytes. We observed that Fp populations were characterized by a higher proportion of small cells with low granularity and a higher growth potential than Fr populations. However, these differences became less marked with increasing age of donors. Aging was also associated with changes in the secretion activity of both Fp and Fr. Using a reconstructed skin model, we evidenced that Fp and Fr cells do not possess equivalent capacities to sustain keratinopoiesis. Comparing Fp and Fr from young donors, we noticed that dermal equivalents containing Fp were more potent to promote epidermal morphogenesis than those containing Fr. These data emphasize the complexity of dermal fibroblast biology and document the specific functional properties of Fp and Fr. Our results suggest a new model of skin aging in which marked alterations of Fp may affect the histological characteristics of skin

    Functional KV10.1 Channels Localize to the Inner Nuclear Membrane

    Get PDF
    Ectopically expressed human KV10.1 channels are relevant players in tumor biology. However, their function as ion channels at the plasma membrane does not totally explain their crucial role in tumors. Both in native and heterologous systems, it has been observed that a majority of KV10.1 channels remain at intracellular locations. In this study we investigated the localization and possible roles of perinuclear KV10.1. We show that KV10.1 is expressed at the inner nuclear membrane in both human and rat models; it co-purifies with established inner nuclear membrane markers, shows resistance to detergent extraction and restricted mobility, all of them typical features of proteins at the inner nuclear membrane. KV10.1 channels at the inner nuclear membrane are not all transported directly from the ER but rather have been exposed to the extracellular milieu. Patch clamp experiments on nuclei devoid of external nuclear membrane reveal the existence of channel activity compatible with KV10.1. We hypothesize that KV10.1 channels at the nuclear envelope might participate in the homeostasis of nuclear K+, or indirectly interact with heterochromatin, both factors known to affect gene expression
    • …
    corecore