210 research outputs found

    Half-Integer Filling Factor States in Quantum Dots

    Full text link
    Emergence of half-integer filling factor states, such as nu=5/2 and 7/2, is found in quantum dots by using numerical many-electron methods. These states have interesting similarities and differences with their counterstates found in the two-dimensional electron gas. The nu=1/2 states in quantum dots are shown to have high overlaps with the composite fermion states. The lower overlap of the Pfaffian state indicates that electrons might not be paired in quantum dot geometry. The predicted nu=5/2 state has high spin polarization which may have impact on the spin transport through quantum dot devices.Comment: 4 pages, accepted to Phys. Rev. Let

    Wigner molecules in polygonal quantum dots: A density functional study

    Get PDF
    We investigate the properties of many-electron systems in two-dimensional polygonal (triangle, square, pentagon, hexagon) potential wells by using the density functional theory. The development of the ground state electronic structure as a function of the dot size is of particular interest. First we show that in the case of two electrons, the Wigner molecule formation agrees with the previous exact diagonalization studies. Then we present in detail how the spin symmetry breaks in polygonal geometries as the spin density functional theory is applied. In several cases with more than two electrons, we find a transition to the crystallized state, yielding coincidence with the number of density maxima and the electron number. We show that this transition density, which agrees reasonably well with previous estimations, is rather insensitive to both the shape of the dot and the electron number.Comment: 8 pages, 11 figure

    Variational Monte Carlo for Interacting Electrons in Quantum Dots

    Full text link
    We use a variational Monte Carlo algorithm to solve the electronic structure of two-dimensional semiconductor quantum dots in external magnetic field. We present accurate many-body wave functions for the system in various magnetic field regimes. We show the importance of symmetry, and demonstrate how it can be used to simplify the variational wave functions. We present in detail the algorithm for efficient wave function optimization. We also present a Monte Carlo -based diagonalization technique to solve the quantum dot problem in the strong magnetic field limit where the system is of a multiconfiguration nature.Comment: 34 pages, proceedings of the 1st International Meeting on Advances in Computational Many-Body Physics, to appear in Journal of Low Temperature Physics (vol. 140, nos. 3/4

    Stability of vortex structures in quantum dots

    Get PDF
    We study the stability and structure of vortices emerging in two-dimensional quantum dots in high magnetic fields. Our results obtained with exact diagonalization and density-functional calculations show that vortex structures can be found in various confining potentials. In nonsymmetric external potentials we find off-electron vortices that are localized giving rise to charge deficiency or holes in the electron density with rotating currents around them. We discuss the role of quantum fluctuations and show that vortex formation is observable in the energetics of the system. Our findings suggest that vortices can be used to characterize the solutions in high magnetic fields, giving insight into the underlying internal structure of the electronic wave function.Peer reviewe

    Optimal confinement potential in quantum Hall droplets

    Full text link
    We find that the confinement potential of a few electron quantum dot can be tuned to significantly increase the overlap with certain quantum Hall trial wave functions. Besides manipulating inter-electron interaction, this approach may prove useful in quantum point contact experiments, which involve narrow constrictions.Comment: 4 pages, 1 figur

    Size-segregated mass distributions of aerosols over Eastern Mediterranean: seasonal variability and comparison with AERONET columnar size-distributions

    Get PDF
    International audienceThis work provides long-term (2004?2006) size segregated measurements of aerosol mass at a remote coastal station in the southern Europe, with the use of size-selective samplings (SDI impactor). Seven distinct modes were identified in the range 0?10 ”m and the dominant were the "Accumulation 1" (0.25?0.55 ”m) and the "Coarse 2" (3?7 ”m) modes. The seasonal characteristics of each mode were thoroughly studied and different sources for submicron and supermicron particles were identified, the first being related to local/regional and transported pollution with maximum in summer and the latter to dust from deserted areas in Northern Africa maximizing in spring. On average, PM2.5 and PM1 accounted for 60% and 40% of PM10 mass, respectively.The representativity of the ground-based measurements for the total column was also investigated by comparing the measured aerosol mass distributions with the AERONET volume size distribution data. Similar seasonal patterns were revealed and AERONET was found adequate for the estimation of background levels of both fine and coarse particles near surface, with certain limitations in the case of pollution or dust abrupt episodes due to its low temporal coverage

    On the lower bound on the exchange-correlation energy in two dimensions

    Get PDF
    We study the properties of the lower bound on the exchange-correlation energy in two dimensions. First we review the derivation of the bound and show how it can be written in a simple density-functional form. This form allows an explicit determination of the prefactor of the bound and testing its tightness. Next we focus on finite two-dimensional systems and examine how their distance from the bound depends on the system geometry. The results for the high-density limit suggest that a finite system that comes as close as possible to the ultimate bound on the exchange-correlation energy has circular geometry and a weak confining potential with a negative curvature

    Broken Symmetry in Density-Functional Theory: Analysis and Cure

    Get PDF
    We present a detailed analysis of the broken-symmetry mean-field solutions using a four-electron rectangular quantum dot as a model system. Comparisons of the density-functional theory predictions with the exact ones show that the symmetry breaking results from the single-configuration wave function used in the mean-field approach. As a general cure we present a scheme that systematically incorporates several configurations into the density-functional theory and restores the symmetry. This cure is easily applicable to any density-functional approach.Comment: 4 pages, 4 figures, submitted to PR

    Rectangular quantum dots in high magnetic fields

    Get PDF
    We use density-functional methods to study the effects of an external magnetic field on two-dimensional quantum dots with a rectangular hard-wall confining potential. The increasing magnetic field leads to spin polarization and formation of a highly inhomogeneous maximum-density droplet at the predicted magnetic field strength. At higher fields, we find an oscillating behavior in the electron density and in the magnetization of the dot. We identify a rich variety of phenomena behind the periodicity and analyze the complicated many-electron dynamics, which is shown to be highly dependent on the shape of the quantum dot.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    Electronic structure of rectangular quantum dots

    Get PDF
    We study the ground state properties of rectangular quantum dots by using the spin-density-functional theory and quantum Monte Carlo methods. The dot geometry is determined by an infinite hard-wall potential to enable comparison to manufactured, rectangular-shaped quantum dots. We show that the electronic structure is very sensitive to the deformation, and at realistic sizes the non-interacting picture determines the general behavior. However, close to the degenerate points where Hund's rule applies, we find spin-density-wave-like solutions bracketing the partially polarized states. In the quasi-one-dimensional limit we find permanent charge-density waves, and at a sufficiently large deformation or low density, there are strongly localized stable states with a broken spin-symmetry.Comment: 8 pages, 9 figures, submitted to PR
    • 

    corecore