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Broken symmetry in density-functional theory: Analysis and cure

A. Harju, E. R@aen, H. Saarikoski, M. J. Puska, and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

K. Niemela
Theoretical Physics, University of Oulu, P.O. Box 3000, FIN-90014 University of Oulu, Finland
(Received 26 January 2004; published 1 April 2004

We present a detailed analysis of the broken-symmetry mean-field solutions using a four-electron rectangular
guantum dot as a model system. Comparisons of the density-functional theory predictions with the exact ones
show that the symmetry-breaking results from the single-configuration wave function used in the mean-field
approach. As a general cure we present a scheme that systematically incorporates several configurations into
the density-functional theory and restores the symmetry. This cure is easily applicable to any density-functional
approach.
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[. INTRODUCTION S=0 and 1 and the SDW solution predicted by DFT. We find
that SDW clearly reflects the limitations of basic DFT to
The nanoscale semiconductor systems are technicallgescribe systems that have more than one major configura-
very promising for future components of microelectronic de-tion in the ground-state wave function. There is a continuous
vices. From the theoretical point of view, quantum ¢@D) interest for developing DFT methods for these kinds of sys-
systems are valuable source of novel quantum effects. Marigms. The main difficulty for DFT is the fact that these sys-
of these result from the fact that the electron-electron interfems have ensemble-representableE-VR) densities in
action and external magnetic field have greatly enhanced efontrast to the more common pure-staterepresentabléeP-
fects compared to atoms and molecules. This raises neXR) densities’ As an interesting feature we see a continuous
challenges for the theoretical methods, and the validity ofransition from an E-VR to a P-VR density as we deform our
approximations in, e.g., mean-field approaches can be que§D- Finally, we present a simple modification of DFT that is
tioned. For this reason, QD Systems serve as perfect tegple to describe the mu|t|C0nf|gUrat|0na| nature of the ground
cases to develop the electronic structure methods, with thetates.
results still applicable to great variety of physical problems
where mean-field approaches have been used. Il. THE MODEL AND THE METHODS
In earlier studies, Hartree-Fock and especially density-
functional theory(DFT) methods have shown to produce ac-
curate results for various QD systems, even with srivall
However, in the context of solutions with a broken spin sym-

The generally used model Hamiltonian of Akelectron
QD system can be written as

N 2 N 2
metry, the validity of the mean-field approaches has been HZE _ﬁ_v,2+V (r) |+ _c (1)
actively discussed in the literatufeThe spin-density wave Sl oome N T & e

(SDW) formation in QD’s has been compared to similar phe- . . .
nomena found in isotropic metdlsprganic linear-chain where we have used the effective-mass approximation to de-

compounds,atomic nuclef and small fermion clustefsc- ~ SCTibe electrons moving in they plane, surrounded by back-
cording to the Jahn-Teller theorem, any nonlinear moleculagrfund material of GaAs with the effective electron mass
system in a degenerate electronic state becomes more stafffe = 0-06/M. and dielectric constart=12.4. We use scaled
by removing the degeneracy and thus lowering the symmetr@lomic units, and energies are thus given in*Ha
and the total energy. A crucial difference between molecular~11.86 meV and lengths isig ~9.79 nm. The external con-
and QD systems is, however, that as the nuclei in moleculeinement in thexy plane is described by an infinite hard-wall
are free to move and relax, the QD potentiakigernaland ~ Potential,

fixed as it results from, e.g., metallic gates. Thus to lower the

symmetry in QD, the spin densities must “relax” in an anti- 0, Osx<pL, OsysL

. . . o . Ve X, y) = 2
ferromagnetic fashion to a SDW solution. This is claimed to edX.Y) » elsewhere. @
reveal the electron correlations inherent in the true ground , , ,
state? The deformation parametg defines the ratio between the

In this paper, we analyze symmetry breaking in a two-Side ;engths Qf the recjtanglg. The area of the dot is f_|xed _to
dimensional rectangular Glusing both DFT and exact di- be 7 - The_ smgle-partlcle_ eigenstates are sine functions in
agonalization (ED). We concentrate on the four-electron POth directions, Iabeled2W|th th quantum numberg, ),
case, as it is the first particle number showing the generdind energiess, . =(n,/B+Bny)/2. Figure 1 shows the
features of electronic structure seen also for larger particl¢hree lowest eigenstates and the most impor&st0 con-
numbers, such as the transitions between the two spin statéigurations of the four-electron QD.
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FIG. 1. Left panel: The three lowest single-particle states and
their quantum numbersn(,n,). Right: Electron occupations for
the four importantS,=0 configurationsC; . T
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We solve the electronic structure of QD using ED and
DFT. In ED, the many-particle wave function is constructed @
as an expansion of the noninteracting eigenstates. The results =22 w2
approach the exact ones as more terms are added to the ex-
pansion. We use a basis of up to around 15,000 configura-
tions. The interaction matrix elements are calculated numeri-
cally using Gaussian integration. In ED, all many-body % 2 z % 2 -
guantum effects are taken into account in an exact fashion. In
DFT, these are incorporated in a mean-field fashion as an FIG. 3. (a) DFT spin density for the SDW solution. The density
effective potential. In the DFT method used, we allow dif- for the other spin type can be found through rotation by @)®ED
ferent spin densities for up and down electrons. This is necSPin density for the artificial sum 08=0 and S=1 states.(c)
essary forS#0, and needed also f@=0 in order to find C_:ondmonal density from Ep_ for the same spin type_ as th_e electron
broken-symmetry solutions. More details of the DFT methodX€d at “+.” (d) ED conditional density for opposite spins. The

and the numerical implementation can be found from Ref 1number of contour line&rawn at uniform spacings fixed to 10 in
and references therein " “each figure to ease comparisons. The SDW density is more similar

to the unphysical ED density @b) than the conditional densities.

Ill. RESULTS two remains nearly constant for all values @f Such a be-
A. Energies and densities for four-electron dot havior is not seen in th8=0 results, for which we show two
) , DFT energies: one with retained symmetry and another with

In Fig. 2 we present the DFT and ED energies of t,hea broken one. The broken-symmetry solution has a nonzero
rectangular quantum dot as a function of the deformation,a| spin density, corresponding to a SDW solution, see Fig.
parametes. For § close fo unity, the=1 state is lowerin 3 16 DET cajculation with the spin symmetry does not
energy than th&=0 state, in accordance with Hund's rule. ., erge for smalle than those shown. This is due to the
In the case of th&=1 state, the DFT energies compare quiteyegeneracy in the system. Convergence can be achieved by
well with those obtained by ED: the deviation between the,qq of fractional occupations. Comparing the DEF0 en-
ergies to the exact ones, one can see that, unlike foSthe
=1 case, the error in DFT is not constant. The energy of the
symmetry-restricted state grows linearly towargs—1
where the ED energy saturates. On the other hand, the SDW
state has an energy that overcompensates the error in the
symmetry-restricted energy. The energy of the SDW state is
closer to the exact value than the energy of the proper-
symmetry state. One should note that the errors in DFT en-
ergies nearly cancel at the ground-state transition point, and
the DFT prediction for it is very accurate.

It is claimed that the SDW spin densities reflect the inter-
nal structure of the systefiTo analyze this claim, we have
plotted the SDW spin density of the DFT and ED conditional
densities in Fig. 3. The conditional density is defined to be
the electron density of the remaining three electrons as the
, , , coordinates of one of the electrons are fixed. In addition, we
1 1.05 1.1 1.15 1.2 plot the ED spin density for the sum of ti&=0 andS=1

B states. One can see from the densities that there is a clear

FIG. 2. Energy of the four-electron dot as a function of the axis@ntiferromagnetic order in the system. Densities for parallel

ratio 8. The solid lines present ED energies, we use crosseS for Spins are localized in the opposite corners. Apart from this
=1 and diamonds fo=0, correspondingly. The dashed lines are fact, the similarity of the conditional densities to the SDW

DFT energies, pluses f@=1, boxes for thes=0 SDW solution, ~ density of Fig. 3 is marginal. However, the similarity of the
and circles for the symmetri§=0 energy. SDW density to the unphysical mixture of the two-spin states

13.2

12.8f

12.7
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is very clear. The only difference is that the DFT density is T L
slightly more localized. One should note that this similarity
of the SDW solution to a mixture of two different spin states
is pointed out by Hirose and Wingreen using ED in restricted
basis®

0 down
0 down

B. Analysis of the broken symmetry

To understand the electronic structure of the systemand tc |
analyze the problem associated with the SDW solution, it is O
enough to consider only the most important configurations in

the ED solution, presented in Fig. 1. Ti&e=1 state, the FIG. 4. Single-configuration energy as a function of the two
ground state for smajB, has three differen$, states which  anges in the wave function. The left panel correspondé=®.2
are degenerate in energy. The one wWa=0 consists of  and the right oned=0.8. Black areas are the lowest in energy. The
configurationsC; andC, with equal weights for all values of proper symmetry of the wave function is found on the dashed di-
B. The S=0 state is the ground state for large and it  agonal line. The broken-symmetry energy minimasef0.2 corre-
consists of the configurations; and C,. For 8=1, these spond to a single configuration, and = 0.8 to SDW solutions.
have equal weights, but for larggt, C, moves higher in
energy and has a smaller weight in the exact wave functiorenergy of the mean-field state is equal to the average of the
For ~1.2, C, is clearly the dominating configuration. One two exact energies. Furthermore, if one assumesihdtas
should note that at this value ¢, proper symmetry is re- a node on thex axis and, on they one, one can find
stored in the DFT solution. The most natural reason for thejensities similar to the SDW solution above. Now for the
occurrence of the SDW solution is that the basic DFT isQD, the value ofs is close to 0.8, and one can understand
unable to take into account more than one important configuthe occurrence of the SDW solution from this more general
ration for the construction of the Kohn-Sham orbitals and theargument.
resulting densities. In terms of the configurations, the DFT  The SDW solutions of Ref. 1 for larger particle numbers
spin densities ap=1.2 correspond t&C;. For smallerB,  can equally well be understood based on the four-electron
however, the SDW spin densities can only be obtained by 8ase and the general argument presented above. In the cases
linear combination of all four configurations. Fr=1, this  where two Kohn-Sham orbitals are degenerate, we have a
linear combination is equal to the unphysical mixture of twoS=1 ground state. When the aspect rafias changed, the
different spin states used for Figdd above. energies split and one always finds a broken-symmetry SDW
It is possible to analyze the broken-symmetry solutionsolution. The similarity to the four-electron case follows
more generally by considering a mean-field-type singlefrom the fact that in all these cases, there are two spatial
configuration wave function for two up- and two down-spin orbitals of both spin type occupied by two electrons. The
electrons, occupying the orbitalsjy and sin@,)¢1  spin density in the SDW structure can then be directly found
+cos(,) i, whered,, contains the variational freedom for a from the two nearly degenerate states ag« 1,)°— (¢,
spin typeo. Expanding this wave function results in four —,)2. For example, the densities in Fig. 6 of Ref. 1 are
configurations similar t4C;}{_, above. Assuming a further accurately reproduced by this formula using for the degener-
similarity to the QD case fog=1, one can write a Hamil- ate states the noninteracting ones with quantum numbers

oup © 0 up n

tonian matrix of the four configurations as (1,3) and (3,2) for the left panel, or (3,2) and (4,1) for the
right panel.
E, 6 0 O
oo 6 B 0 O @ IV. RECOVERING SYMMETRY
1o 0 Ey &/

Based on the results presented above, it is clear that stan-
0 0 & Eg dard DFT is not able to describe accurately E-VR systems.
The method of Ullrich and Kohhis one possible solution,
where the configurations couple via the off-diagonal matrixput this method might have an underlying problem. Namely,
elements (taken to be real The four exact energies are even in the case of an open shell and degeneracy, there are
Eo*xd and E;= 4. One can set without loss of generality systems that still are P-VR, simply because the configura-
Eo=0 andE,=1. The single-configuration energies have antions do not necessarily mix even if they are degenerate. One
interesting dependence @ shown in Fig. 4. We present the such example is the parabolic QD, where the angular mo-
energy as a function of the two variational anglefor cases  mentum is a good quantum number and single-particle states
6=0.2 and 0.8. For smalb, the second orbital for the can be chosen in such a fashion that only one major configu-
minimum-energy solution ig;, for one-spin type ands, for ration is found. It is not straightforward to see how the
the other. For the casé=0.8, the minima are found with method of Ref. 3 assort the open-shell cases that are E-VR
orbitals 1 + ¢, and 1 — . The resulting total wave func- from those that are still P-VR.
tion of this case can easily be found to be a sum of the two As a possible solution we propose a scheme where first a
exact wave functiongwith energies— 6 and 1-6), and the standard DFT calculation is performed for the sysi{@vith-

153101-3
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out symmetry breaking but with fractional occupations forthe ground state, and DFT is unable to couple these. This
the degenerate leveld-or our case with3=1, the occupa- coupling can be introduced, and one natural way isdviat
tions of the two highest orbitalg; and ¢, are 1/2 and the Eq.(4) above.

DFT energy is 13.26. One can construct t#% S,=0 DFT The generalization of the scheme for cases without an
configurations that have density equal to the DFT one byexact degeneracy of the DFT orbitals is straightforward. In
defining new orbitalsp-. = i, =i ¢,. Now the configurations addition, the approximation made fércan be directly used
involve the core DFT orbitaly,, and eitherg,. or ¢_. The for cases with larger particle numbers, too. This is because
occupied orbitals in configurations are the same for both spithe states that are occupied in both configurations do not
electrons, similarly taC; andC, in Fig. 1. The coupling of appear in the formula fo6. We believe that the presented
these two DFT configurations can be approximated by th@pproach shows to be useful for many applications of DFT,
basic formula by Slatéras especially for molecules, where the calculations of chemical
reactions have observed similar problems of basic BFT.
More details and comparisons with other ensemble DFT ap-
proaches are left for forthcoming studies.

1
o= [ #ir0gtra= 6 (e (pdndr,. @
12

Now the DFT energy gives the diagonal Hamiltonian matrix
elements and thus incorporates partly correlations, and the V. CONCLUSIONS
above formula fors gives the off-diagonal Hamiltonian ma- . i
trix elements that result from the multiconfigurational nature ~ €oncluding, we have shown that the use of a single-
of the ground state. The two-ensemble DFT energy can pgeonfiguration wave function in a mean-field theory can lead
found by diagonalizing the Hamiltonian matrix. For our ex- {0 @n unphysical solution with a broken symmetry. In our
ample, the absolute value @fis found to be~0.14. Thus C€ase of a four-electron rectangular QD, the energy of the
the mixing of the two configurations lowers the DFT energySPW solution is reasonable, but the spin densities have only
to 13.12. This value is consistent with the ED one. if one@ Minor similarity with the exact total or conditional ones.
takes into account the difference in DFT and ED energies folVe also present an analysis with a more general Hamiltonian
the nondegenerate cases. One should note that for a parabdf@trix and we feel that our findings are relevant for a great
QD, the absolute value af is zero(resulting from the rota- Variety of systems studied by the mean-field approaches,
tional symmetry, meaning that the configuratiofiwith dif- DFT in particular. As a cure, we propose a.sche_me for incor-
ferent angular momentundo not mix. This also shows that poratlng systematically several conflgurat[ons into a mean-
our scheme correctly predicts the system to be P-VR. A simifi€ld approach. The method presented avoids the necessity of
lar behavior can be found for the multiplets in Open_She”symmetry br_eakmg, and has a built-in criteria to determine if
atoms. several configurations are actually needed or not.

The underlying idea of the scheme presented above is that
DFT is able to efficiently describe correlation effects in a ACKNOWLEDGMENTS
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