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Wigner molecules in polygonal quantum dots: A density-functional study

E. Rasanen, H. Saarikoski, M. J. Puska, and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
(Received 9 August 2002; published 31 January 2003

We investigate the properties of many-electron systems in two-dimensional poly@oaagle, square,
pentagon, hexaggmpotential wells by using the density-functional theory. The development of the ground-state
electronic structure as a function of the dot size is of particular interest. First, we show that in the case of two
electrons, the Wigner molecule formation agrees with previous exact diagonalization studies. Then we present
in detail how the spin symmetry breaks in polygonal geometries as the spin density-functional theory is
applied. In several cases with more than two electrons, we find a transition to the crystallized state, yielding
coincidence with the number of density maxima and the electron number. We show that this transition density,
which agrees reasonably well with previous estimations, is rather insensitive to both the shape of the dot and
the electron number.

DOI: 10.1103/PhysRevB.67.035326 PACS nuntder73.21.La, 71.16-w

[. INTRODUCTION a lower total energy in the system. In our earlier work for a
parabolic six-electron quantum dot, we examined the energy
Research into nanoscale electronic structures has been edifference between the polarized and paramagnetic spin
panding continuously. Quantum dbtepresent basic elec- states, and showed that the SDW solution agrees well with
tron systems that have been fabricated using semiconductgie QMC results, in contrast to the symmetry-preserved DFT
materials for almost 15 years. Because the confinement @folution! However, the problem in the SDFT calculations is
electrons in quantum dots or “artificial atoms” can be variedthe fact that only the component of the total spin can be
at will, they have become a playground in which the basicspecified. Therefore, one may ask if a mixed state of several
physics of interacting electrons can be surveyed and theoregigenstates, corresponding to differ@with a fixedS,, is
ical models can be tested. physically meaningful, an argument presented by Hirose and
In quantum dots the correlation effects between electrongvingreen'* In fact, a mixed-symmetry state is not an eigen-
have to be considered carefully because the external confingtate of the Hamiltonian, but the lowest state of a well-
ment is remarkably weaker than in real atoms, where thelefined mixture of symmetries is a functional of the density
independent electron model with mean-field theories usuallyt the time of preparation of the stat® The symmetry-
gives good results. As the confinement strength is loweredsroken electron structure thus gives more accurate approxi-
the mutual Coulomb interaction becomes gradually domimations for the energy and describes the internal nature of
nant, and at a certain point, the electron density begins tehe many-body wave function better than the symmetry-
exhibit localization to classical positions in order to mini- preserved solutioff
mize the interaction. This phenomenon corresponds to the The criterion for the WC in quantum dots may be deter-
Wigner crystallization(WC) in a two-dimensional electron mined with several attributes. Egger al® considered three
gas (2DEG) (Ref. 2. According to quantum Monte Carlo criteria yielding similar results in their QMC analysis for
simulations, the crystallization occurs when the 2D electrorparabolic quantum dots. They observed the electron density
densityn has decreased such that the density paramigter in real space and searched for the confinement at which the
>37. Heren=1/(wrZ) andr is given in units of the effec- shell structure began to form. In addition, they monitored a
tive Bohr radiusa} =#2e/m*e?, wheree is the dielectric  quantity depending on the pair-correlation function and
constant andn™* is the effective electron mass, specific to thechanges in the energy spectra. Localization may also be ob-
semiconductor material in question. In 2DEG with impuritiesserved directly by examining the probability densities of
the broken translational invariance has been shown to resusingle electrons® Creffield et al* have studied the systems
in the WC at a much larger electron density with=7.5  of two electrons confined by polygonal 2D infinite-barrier
(Ref. 3. In quantum dots the transition to the WC has beernwells, and their criterion for the onset of the WC is the ap-
predicted to occur at even higher electron densfti€One  pearance of a local density minimum at the center of the dot.
of the questions in this context is how the shape and electrotn the (SDFT calculations the criterion should be based on
number of a two-dimensional quantum dot affect the crystalthe density(spin densities However, it became evident in
lization. our study that the criterion by Creffielet al. cannot be ap-
The weak-confinement limit in quantum dots has beerplied for polygonal dots containing more than two electrons,
studied with various theoretical methods, including exactecause the electron density has maxima at the corners of the
diagonalizatiorf;® quantum Monte Carfo'® (QMC), and un-  dot also at very high electron densities.
restricted Hartree-Foél (UHF) techniques, as well as the Quantum dots are usually modeled by restricting a certain
spin density-functional theofy*~*3(SDFT). In this regime number of electrons to a 2D plane and assuming the confin-
the SDFT allows the formation of spin density wavesing potential to have a parabolic shape. An example of more
(SDW's), i.e., the breaking of the spin symmetAleadingto  general modeling is the above-mentioned exact diagonaliza-
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tion study by Creffieldet al* Moreover, Akbar and Lé&  Within the EMA, the single-particle Schiinger equation of
used the SDFT to study square quantum dots which have the Kohn-Sham scheme reads as

small finite extent in the third dimension perpendicular to the
square. In the case of two electrons, they found good agree-
ment with the results of Creffieldt al. For two- and four-
electron dots, Akbar and Lee estimated the onset of the WC

to occur atrs~6. _ . whereVg is the effective potential for spiar containing the

In the present work we employ the SDFT to investigategyiarnal potential and the Hartree and exchange-correlation
the properties of two-dimensional quantum dots with & geNytentials of the electron-electron interactions. In the spin-
eral polygonal confinement. We concentrate on the WC Itompensated calculatiotequal spin densiti¢sthe scheme

the weak-confinement limit, which is obtained simply by in- e q,ces to the standard density functional theory within the
creasing the side length of the dot. In the numerical calculayyg density approximatiofLDA ).

tions we apply a recently developed real-space apprbach. |, the self-consistent Kohn-Sham scheme, we perform
As a symmetry-unrestricted method it is flexible regardingcy|cyjations in real space by using two-dimensional point
the applied geometry and allows also SDW solutions. In theyiiqs The number of grid points in the computing region is
regime of the spin-symmetry-broken solutions, we find thaigg. go. This allows the use of four grids in the employed
further weakening of the confinement leads to electron de”r'nultigrid scheme(see below and gives an accuracy better
sities with as many maxima as there are electrons in the@an ~3% in the total energy, checked with Richardson
system. We show that the appearance of this behavior can R& o nolatior?® The differential equations are discretized
used, at least in several cases, consistently as a criterion fgith finite difference€? and the procedure is efficiently ac-
the onset of the WC for quantum dots of various shapes anQg|erated with multigrid techniqu&sto solve the Poisson
dn‘fe;]ent eI?ctronfnl:]mbers. . foll and single-particle Schdinger equations. Applying the mul-
The outline of the paper is as follows. In _Sec. Il 'We ti5id scheme in the latter case is a fairly complicated task
present the theoretical model and the computational methoy .5 ;56 hoth the eigenfunctions and eigenvalues have to be
of our calculations. From the results we first compare the| eq simultaneously. In order to avoid nonlinearity prob-

DFT, i.e., spin-compensated calculations for a two—electrorpems, the Rayleigh quotient multigritRQMG) method® is

dot to the exact diagonalization resuits. Then we em_p'Oy th‘Elsed for the solution of the eigenpair corresponding to the
SDFT and present the symmetry-broken solutions first for g, act eigenvalue. We employ this method with a recent

two-electron dot and thereafter for larger systems. A SUMgeneralization to an arbitrary number of lowest eigenenergy

mary and discussion are given in Sec. V. statest” The discretized eigenvalue equation is solved by
minimizing the Rayleigh quotier{ty|H|)/{|¢) on thefin-

Il. METHODS est grid, using the coarser grids to remove the lower-

L ) frequency components of the error. The technique reduces

The quantum dot meltenal is chosen to be GaAs with thgemarkaply the number of relaxation sweeps needed for solv-
effective electron mass”* =0.0671m, and the dielectric con- 4 the Schidinger equation. Other advantages of the real-
stante=12.4. The effective Bohr radiusg is thus 9.79 nm.  gpace solver are its flexibility with the boundary conditions

The Hamiltonian of a many-electron system in a polygonaland good suitability for parallel computing.
potential well is written as

2

V24 VI |t .o(1) = €41 4(1), )

2m*

N ) IIl. WIGNER CRYSTALLIZATION OF TWO ELECTRONS

K2 e

2m*

Vit Veu(ri) | + (2) First we perform DFT calculations on two-electron po-
lygonal quantum dots by setting the spin densities equal
(ny=n,) to prevent the breaking of the spin symmetry. The
ensuing total energy with its decomposition to Coulomb, ki-

) netic, and exchange-correlation energies is given in Fig. 1 for

0, inthedot, (7 & square dot. As predicted, the Coulomb energy becomes

o, elsewhere. increasingly more dominant over the kinetic energy as the

side length_ of the dot is enlarged and the WC is expected to

The effective mass approximatioEMA) used with the occur.

Hamiltonian (1) represents an alternative to the constant- The ground-state electron density distributions for the tri-

interaction modet® in which the Coulomb interaction be- angular, square, pentagonal, and hexagonal dots at three side

tween the electrons is assumed to be independent of the eldengthsL =50, 100, and 400 nm are presented in Fig. 2. In
tron numberN. The EMA has been shown to be a reliable the small dots the electron density is lumped at the center,
approximation if the confinement is not particularly strdig. whereas the large dots represent Wigner-molecule-like be-
In the SDFT formalism, the electron density is solvedhavior, the density being localized near the corners in order
self-consistently with the Kohn-Sham equatiéhé! To ap-  to minimize the dominating Coulomb interaction. The local-
proximate the exchange-correlation energy functional, wezation is seen to depend strongly on the area of the dot.
use the local spin density approximatidnSDA) with the  Creffield et al* defined the system to be a Wigner molecule,
interpolation form by Tanatar and Ceperéfor the 2DEG.  when a local minimum first appears at the center. According

N
H=>,
i=1

i<] €|fi_rj|'

where the external potential has a simple form

Vext(x1y):|
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of connections between the density maxima, and estimated a
critical value ofrs~6 for the transition point. Considering

15 1 their different definitions for the WC, this result is in a quali-
tative agreement with ours~3.

Intuitively, the localization of two electrons into all the
corners of a polygonal potential well might first appear as a
slightly odd result. Jefferson and Higle?’ have explained
the phenomenon with effective charge-spin models. They
suggested that the low-energy manifold of a system of
strongly correlated electrons can be described properly with
an extended single-band Hubbard model. For example, in a
square two-electron dot th®% Hamiltonian transforms into
the following effective Hamiltonian:

Energy [meV]

-10

_ 1 1 1 1 1 1 _~ i2(I)
30 100 180 200 250 300 350 400 Her=Eo+ (A€'“"R,p+H.C), 4

Side length [nm] .
where R, rotates the electrons at opposite corners on a

FIG. 1. Energy composition in a square two-electron quantunrdiagonal byzr/2. The electron pair may thus tunnel between

dot as a function of the dot size. the ground-state configurations with an amplitude modulated
by a factore'?®. This explains the four-peak structure of the

to our calculations, this occurs in preceding geometries atlectron density in the Wigner limit, predicted already by
L=120, 80, 60, and 50 nm, respectively, which agree withBryant2® Diagonalization oH .4 gives a good approximation
the exact diagonalization results. This qualitative consistencjor the ground-state energies obtained from the¢
establishes the applicability of the density-functional ap-Hamiltonian®®
proach to small systems considered in this study.

We define the density parameterras- VA/(N ), where IV. SYMMETRY-BROKEN SOLUTIONS
A is the area of the polygon. In the caseroforners and a
side lengthL we thus get A. Two-electron dot
Next we perform the same calculations as above, but
L /n ™ without the restrictiom;=n, and consider still the ground-
's=2 NV Ngm Oty state solution, for whicls,=0. Comparison of the new total

energies with the spin-compensated results as a function of
By using this definition and applying the criterion presentedthe dot size reveals an interesting transition to a lower-energy
by Creffield et al* for the WC transition point, we find;  state. At this point, representing already a Wigner-
~ 3 for the critical density in all four geometries. Akbar and crystallized distribution, the spin symmetry breaks and the
Lee"® employed the SDFT for square 2D quantum dots withresult is a SDW-like ground state.
an additional harmonic confinement along thexis. They The relative energy differences between the spin-
used a more rigorous criterion for the WC, i.e., the breakingsymmetric and SDW-like solutions, corresponding to our

Triangle Square Pentagon Hexagon

FIG. 2. Electron densities in
polygonal two-electron quantum
dots with different sizes. In the
square, pentagon, and hexagon the
amplitudes have been multiplied
by a factor of 2.
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Triangle &
0.04F Square =
Pentagon x
Hexagon x
_ DFT
% 0.03r
E
o
L
' 0.02}
L
0.01r
0 Pt !
3
SDFT

FIG. 3. Total energy differences between the DFH;) and
SDFT (Ep) solutions in polygonal two-electron quantum dots of
four geometries.

DFT and SDFT calculations, respectively, are shown in Fig. t

3 for all the considered geometries. In the triangular wellthe £, 5 pifference in the electron densities between the DFT
transition to the symmetry-broken ground state occurs at g, and SDFT(down) solutions in a square and triangular two-
remarkably smaller size than in the other three geometriegjeciron quantum dot at =400 nm. The spin alignments are
More precisely, for the triangle we get the transitionrat  spown in the SDFT case.

=3.5 and for the square, pentagon, and hexagorr at

~4.5. ) ) . ) _shown in Fig. 5, the spin-up and spin-down densities are
In order to explain this behavior, one may first examiney,|ly separated in the square, whereas in the triangle they
the lowest Kohn-Sham energy states, shown in Fig. 4 for th@are a corner. In the triangular geometry, the breaking of the
triangular and square quantum dpts in the symmetry—brokegpin symmetry can thus lower the energy via the exchange-
SDFT ground state, as well as in the symmetry-preservedy rejation and Coulomb contributions relatively more and
DFT solution. In the latter state, the threefold geometry proyiih a relatively smaller cost in kinetic energy than in the
duces more low-lying degenerate levels in the triangle thaqare. Nevertheless, in none of these geometries does the
the fourfold geometry in the square. In the SDFT Ca|CU|a'breaking of the spin symmetry enlarge the Fermi gap, con-
tions these degeneracies are split such that the energy Ievq}gry to SDW formation in large, parabolic quantum dts.

become pronouncedly spread in the triangular geometry, The composition of the energy difference between the

whereby the lowest levels are pushed more efficiently dow”'symmetry-preserved and the symmetry-broken states is pre-

wards in the triangle than in the square, pentagon, and héxagnted in Fig. 6 for a square dot. Naturally, the change in the
gon. There is also a qualitative difference between the

symmetry-broken electron densities in these geometries. As

4 0.2
Triangle Square
— = 0.1
350 e 1 =
- E
° 2 2 i
E |
N -0
5 8 —— — — —_— J w
2 1.
c
L — 2 2
. o o -0.1+ AEkin
) - ) ® e @& |
e o . L .
t | t } i | t | 100 150 200 250 300
Side length [nm]
ol SDFT DFT SDFT DFT i

FIG. 6. Composition of the energy difference between the DFT
FIG. 4. Lowest Kohn-Sham energy levels of triangular and(E;) and SDFT E,;) solutions of a square two-electron quantum
square two-electron quantum dotsrat-8. dot as a function of the dot size.
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exchange-correlation energy favors and the change in the
kinetic energy opposes the transition. The behavior of the
Coulomb energy is interesting: its strong decrease actually =
initiates the breaking of the spin symmetry. However, as the £
dot is made larger thabh~250 nm, the Coulomb energy is &
higher in the SDW-like than in the symmetry-preserved state. .~
The phenomenon can be understood by having a further Iook?
at the electron density distributions in the square as shown in
Fig. 5. In the SDFT solution, the electron density is shifted 7«
from the region between the opposite spin directions towards @@
the corners. At small dot sizes this decreases the Coulomb
repulsion between the charge peaks in the adjacent corners
more than the repulsion increases inside the peaks. At large
distances the opposite is true.

4 Triangular dot
®=  Square
---- Parabolic

B.N>2

Then we consider some special cases with more than two FIG. 7. Total energy differences between te=3 andS,=0
electrons. The next geometry-independent magic configuratates in the triangulatriangle markers square(square markers
tion after N=2 is a six-electron dot. It represents an inter-and paraboliddashed lingsix-electron quantum dots.
esting point of comparison with the results obtained for a

parabolic quantum dot in the weak-confinement limit. Wespin Symmetric untifszz_g_ However, the energy difference
find that the spin symmetry is brokenrgt=3.8, 3.1, 4.6, and  grows rapidly in this dot, being considerably larger than in
4.9in triangu!ar, square, pentagonal, and hexagonal quantufRe N=6 dot atr~10. In the large dots the SDFT solutions
dots, respectively. show pronounced localization of the spin densities as can be

In the parabolic dot with/e,(r)= 3 w§r?, therg param-  seen in Fig. 9. FoN=6 and 8, the number of maxima in the
eter can be estimated fro?):ez/(eq-reoem*rg\/ﬁ) (Ref.  total electron densities equals number of electrons, leading to
12). In pursuance of our earlier work for this quantum Hot, 7 and #/2 rotational symmetries in these systems, respec-
the SDW formation was not found untik=6.6. The sharp tively. The spin symmetry can be considered to be broken
corners in the confinement seem thereby favor the transitiomore completely in thdN=8 dot, where the density peaks
to the symmetry-broken state. In the six-electron case, howwith the same spin are located on diagonally opposite verti-
ever, the triangular geometry is more stable against the trarces, in contrast to thBl=6 dot where they lie on adjacent
sition than the square one. A square witk- 6 represents an corners. The interaction is thus minimized more efficiently in
inconvenient combination, similar to the triangle with  the N=8 dot, corresponding to a relatively rapid decrease of
=2, in which the electrons cannot be evenly divided to thethe total energy shown in Fig. 8. For comparison, the results
corners of the polygon. As the number of the corners infor a triangular quantum dot witN=6 are also presented. In
creases further, the transition shifts to highgwvalues, ap- that system, the increase in the energy difference resembles
proaching the point of the SDW formation in the parabolic
guantum dot with a circular symmetry.

For N=6, we consider also the possibility of spin polar-
ization, i.e., theS,= 3 state becoming the ground state in the
low-density limit. The energy differences between the polar-
ized (S,=3) and paramagneticS{=0) states for triangular =
and square geometries as a functiorr gare shown in Fig. @ 02
7. For comparison, the SDFT results for the parabolic quan- —,
tum dot! are also presented, the latter showing spin polar- "
ization atr >12. We were not able to obtain well-converged w™
results for the triangle and square quantum dots at lagge
values. Therefore we can only speculate by extrapolation that
polarization could occur in the triangle and square slightly
earlier than in the parabolic quantum dot.

Besides the geometry, we can study how the number of
electrons affects the breaking of spin symmetry. First we
consider a square dot with=6, 8, and 12, which all cor-
respond to completely filled shells. Figure 8 shows the en-
ergy difference between the spin symmetry-preserved and G, 8. Total energy differences between the DFE,) and
-broken solutions as a function of tlig. For N=6 andN  SDFT (E,) solutions in square quantum dots wih=6, 8, and 12

=12, the spin symmetry breaks a=1.7 andry=1.1, re-  (square markejs Results for theN=6 triangle quantum dot are
spectively, whereas the ground state of Hve 8 dot remains also given(triangle markers

0.1r
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N=38 L=100nm L =400 nm

23| CIIIII1 IIiIiis ZIIIIIzozzzmzz lop 58

22

,,,,,,,,,,,,,, 56

21

Energy [meV]

20 54

SDFT DFT SDFT DFT 52

FIG. 11. Lowest Kohn-Sham energy levels inNa=6 square
quantum dot with side lengths=100 and 400 nm. Solid and
dashed lines correspond to the occupied and unoccupied states, re-
spectively. The levels are nondegenerate, except the doubly degen-
erate levels denoted by the numbézs

FIG. 9. Electron densities of the DFTip) and SDFT(down)
solutions inN=6 andN=8 square quantum dots with side lengths

o ) in all the dots, in which the electron density localizes to a
L =300 nm. The spin alignments are shown in the SDFT case.

number of maxima coinciding with the number of electrons.

) ) e The appearance of the last density maxima thus drives the

the behavior of theN=8 square dot, reflecting a similar |5\ est Kohn-Sham energy levels towards degeneracy. The

symmetry-broken geometiigee Fig. 10, beloy complete degeneracy would be the ultimate state for the
After the breaking of the spin symmetry, there can be seeyjigner crystal. In Fig. 11 one can also notice that the Fermi

only four density maxima in the corners of the=6 and 455 is considerably larger in the symmetry-broken solution

N=8 square quantum dots, resembling the DFT soluib@  {h4 in the symmetry-preserved case, resembling the situa-
upper row of Fig. 9. The dot size has to be increased sub-ton, in large, parabolic quantum dd.

stantially before the maxima in the middle of the edges ap- \ye have carefully determined the values at which the

pear(the lower row. We can observe the same behavior in|5st maxima appear and found astonishingly similar values
the N=6 triangle andN=10 pentagon, in both where the o the different systems studied, although the breaking of
spin symmetry breaks at=2.3. Their density distributions e spin symmetry occurs on a broagscale. The critical
at larger s values are given in Fig. 10. In all these four cases,, g es ofrg are=3.8 and 4.0 foN=6 andN=8 square
the number of density maxima equals the number of elecdots, respectively, and=3.9 for both theN=6 triangle and
trons in the system. Therefore the appearance of the lagts N=10 pentagon. In the case of two-electron dots, the

density peaks can be considered as the final stage in the onsg},ye criterion for the WC cannot be applied, but the onset

of the WC in the SDFT formalism. _of the spin-symmetry-broken state gives a reasonable esti-
In order to analyze the appearance of the last density,5ia ofr.=3.5 for the triangulaN=2 dot andr =4.5 for

peaks, we ShOXV in Fig. 11 the lowest Kohn-Sham energynq othern=2 polygonal quantum dots. Our estimatergf
levels for theN=6 square quantum dot with side lengths  _ 4 g for the WC transition point is consistent with the re-

=100 and 400 nm, corresponding tg~2 and 9, respec- g is for small, parabolic quantum d&t2 It is also clearly
tively. At the smaller size, the spin symmetry has alréadysa ey tharr ~7.5 obtained for the fluid-solid transition in
broken and split the DFT degeneracies. As the dot is madg

EG containing impuritied.
larger, the two lowest states become closer to each other ané3 g mp
are remarkably lowered in comparison with the symmetry-

preserved DFT solution. This condensation occurs similarly V. SUMMARY

We have studied the electronic properties of polygonal
two-dimensional quantum dots by employing the spin
density-functional theory. The numerical calculations are
performed with a symmetry-unrestricted real-space scheme.
Especially, we have focused on the behavior of these systems
at the weak-confinement limit, where the role of the electron-
electron interactions becomes dominating and eventually
leads to the formation of the so-called Wigner molecules.

First we have shown that the density-functional theory is
capable of reproducing, in agreement with the exact diago-
nalization studies, the behavior of the electron density in

FIG. 10. Electron densities aj~8 in triangular and pentagonal polygonal two-electron quantum dots as the spatial size of
quantum dots wittN=6 andN= 10, respectively. the potential well increases.
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The spin density-functional theory leads inevitably to thethe critical density. This value does not depend strongly on
breaking of the spin symmetry. For different geometries andhe geometry nor the electron number of the gquantum dot
different electron numbers, this occurs in a wide range ofnd is in agreement with quantum Monte Carlo results.
average electron densities ar, parameters. The spin-
symmetry-broken density shows for certain geometries and
electron numbers a gradual transition, such that the number ACKNOWLEDGMENT
of density maxima coincides with the number of electrons.

We use the appearance of the last density maxima as the This research has been supported by the Academy of Fin-
criterion for the Wigner crystallization and obtaig=4.0 for  land through its Centers of Excellence progré&@00-2003.
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