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Wigner molecules in polygonal quantum dots: A density-functional study

E. Räsänen, H. Saarikoski, M. J. Puska, and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

~Received 9 August 2002; published 31 January 2003!

We investigate the properties of many-electron systems in two-dimensional polygonal~triangle, square,
pentagon, hexagon! potential wells by using the density-functional theory. The development of the ground-state
electronic structure as a function of the dot size is of particular interest. First, we show that in the case of two
electrons, the Wigner molecule formation agrees with previous exact diagonalization studies. Then we present
in detail how the spin symmetry breaks in polygonal geometries as the spin density-functional theory is
applied. In several cases with more than two electrons, we find a transition to the crystallized state, yielding
coincidence with the number of density maxima and the electron number. We show that this transition density,
which agrees reasonably well with previous estimations, is rather insensitive to both the shape of the dot and
the electron number.

DOI: 10.1103/PhysRevB.67.035326 PACS number~s!: 73.21.La, 71.10.2w

I. INTRODUCTION

Research into nanoscale electronic structures has been ex-
panding continuously. Quantum dots1 represent basic elec-
tron systems that have been fabricated using semiconductor
materials for almost 15 years. Because the confinement of
electrons in quantum dots or ‘‘artificial atoms’’ can be varied
at will, they have become a playground in which the basic
physics of interacting electrons can be surveyed and theoret-
ical models can be tested.

In quantum dots the correlation effects between electrons
have to be considered carefully because the external confine-
ment is remarkably weaker than in real atoms, where the
independent electron model with mean-field theories usually
gives good results. As the confinement strength is lowered,
the mutual Coulomb interaction becomes gradually domi-
nant, and at a certain point, the electron density begins to
exhibit localization to classical positions in order to mini-
mize the interaction. This phenomenon corresponds to the
Wigner crystallization~WC! in a two-dimensional electron
gas ~2DEG! ~Ref. 2!. According to quantum Monte Carlo
simulations, the crystallization occurs when the 2D electron
densityn has decreased such that the density parameterr s

.37. Heren51/(pr s
2) andr s is given in units of the effec-

tive Bohr radiusaB* 5\2e/m* e2, wheree is the dielectric
constant andm* is the effective electron mass, specific to the
semiconductor material in question. In 2DEG with impurities
the broken translational invariance has been shown to result
in the WC at a much larger electron density withr s.7.5
~Ref. 3!. In quantum dots the transition to the WC has been
predicted to occur at even higher electron densities.4–8 One
of the questions in this context is how the shape and electron
number of a two-dimensional quantum dot affect the crystal-
lization.

The weak-confinement limit in quantum dots has been
studied with various theoretical methods, including exact
diagonalization,4,9 quantum Monte Carlo5,10 ~QMC!, and un-
restricted Hartree-Fock6,8 ~UHF! techniques, as well as the
spin density-functional theory7,11–13 ~SDFT!. In this regime
the SDFT allows the formation of spin density waves
~SDW’s!, i.e., the breaking of the spin symmetry,12 leading to

a lower total energy in the system. In our earlier work for a
parabolic six-electron quantum dot, we examined the energy
difference between the polarized and paramagnetic spin
states, and showed that the SDW solution agrees well with
the QMC results, in contrast to the symmetry-preserved DFT
solution.11 However, the problem in the SDFT calculations is
the fact that only thez component of the total spin can be
specified. Therefore, one may ask if a mixed state of several
eigenstates, corresponding to differentS with a fixedSz , is
physically meaningful, an argument presented by Hirose and
Wingreen.14 In fact, a mixed-symmetry state is not an eigen-
state of the Hamiltonian, but the lowest state of a well-
defined mixture of symmetries is a functional of the density
at the time of preparation of the state.15 The symmetry-
broken electron structure thus gives more accurate approxi-
mations for the energy and describes the internal nature of
the many-body wave function better than the symmetry-
preserved solution.16

The criterion for the WC in quantum dots may be deter-
mined with several attributes. Eggeret al.5 considered three
criteria yielding similar results in their QMC analysis for
parabolic quantum dots. They observed the electron density
in real space and searched for the confinement at which the
shell structure began to form. In addition, they monitored a
quantity depending on the pair-correlation function and
changes in the energy spectra. Localization may also be ob-
served directly by examining the probability densities of
single electrons.10 Creffield et al.4 have studied the systems
of two electrons confined by polygonal 2D infinite-barrier
wells, and their criterion for the onset of the WC is the ap-
pearance of a local density minimum at the center of the dot.
In the ~S!DFT calculations the criterion should be based on
the density~spin densities!. However, it became evident in
our study that the criterion by Creffieldet al. cannot be ap-
plied for polygonal dots containing more than two electrons,
because the electron density has maxima at the corners of the
dot also at very high electron densities.

Quantum dots are usually modeled by restricting a certain
number of electrons to a 2D plane and assuming the confin-
ing potential to have a parabolic shape. An example of more
general modeling is the above-mentioned exact diagonaliza-
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tion study by Creffieldet al.4 Moreover, Akbar and Lee13

used the SDFT to study square quantum dots which have a
small finite extent in the third dimension perpendicular to the
square. In the case of two electrons, they found good agree-
ment with the results of Creffieldet al. For two- and four-
electron dots, Akbar and Lee estimated the onset of the WC
to occur atr s;6.

In the present work we employ the SDFT to investigate
the properties of two-dimensional quantum dots with a gen-
eral polygonal confinement. We concentrate on the WC in
the weak-confinement limit, which is obtained simply by in-
creasing the side length of the dot. In the numerical calcula-
tions we apply a recently developed real-space approach.17

As a symmetry-unrestricted method it is flexible regarding
the applied geometry and allows also SDW solutions. In the
regime of the spin-symmetry-broken solutions, we find that
further weakening of the confinement leads to electron den-
sities with as many maxima as there are electrons in the
system. We show that the appearance of this behavior can be
used, at least in several cases, consistently as a criterion for
the onset of the WC for quantum dots of various shapes and
different electron numbers.

The outline of the paper is as follows. In Sec. II we
present the theoretical model and the computational method
of our calculations. From the results we first compare the
DFT, i.e., spin-compensated calculations for a two-electron
dot to the exact diagonalization results. Then we employ the
SDFT and present the symmetry-broken solutions first for a
two-electron dot and thereafter for larger systems. A sum-
mary and discussion are given in Sec. V.

II. METHODS

The quantum dot material is chosen to be GaAs with the
effective electron massm* 50.067me and the dielectric con-
stante512.4. The effective Bohr radiusaB* is thus 9.79 nm.
The Hamiltonian of a many-electron system in a polygonal
potential well is written as

H5(
i 51

N F2
\2

2m*
¹ i

21Vext~r i !G1(
i , j

N
e2

eur i2r j u
, ~1!

where the external potential has a simple form

Vext~x,y!5H 0, in the dot,

`, elsewhere.
~2!

The effective mass approximation~EMA! used with the
Hamiltonian ~1! represents an alternative to the constant-
interaction model,18 in which the Coulomb interaction be-
tween the electrons is assumed to be independent of the elec-
tron numberN. The EMA has been shown to be a reliable
approximation if the confinement is not particularly strong.19

In the SDFT formalism, the electron density is solved
self-consistently with the Kohn-Sham equations.20,21 To ap-
proximate the exchange-correlation energy functional, we
use the local spin density approximation~LSDA! with the
interpolation form by Tanatar and Ceperley22 for the 2DEG.

Within the EMA, the single-particle Schro¨dinger equation of
the Kohn-Sham scheme reads as

F2
\2

2m*
¹21Veff

s ~r !Gc i ,s~r !5e ic i ,s~r !, ~3!

whereVeff
s is the effective potential for spins containing the

external potential and the Hartree and exchange-correlation
potentials of the electron-electron interactions. In the spin-
compensated calculations~equal spin densities!, the scheme
reduces to the standard density functional theory within the
local density approximation~LDA !.

In the self-consistent Kohn-Sham scheme, we perform
calculations in real space by using two-dimensional point
grids. The number of grid points in the computing region is
80380. This allows the use of four grids in the employed
multigrid scheme~see below! and gives an accuracy better
than ;3% in the total energy, checked with Richardson
extrapolation.23 The differential equations are discretized
with finite differences,24 and the procedure is efficiently ac-
celerated with multigrid techniques25 to solve the Poisson
and single-particle Schro¨dinger equations. Applying the mul-
tigrid scheme in the latter case is a fairly complicated task
because both the eigenfunctions and eigenvalues have to be
solved simultaneously. In order to avoid nonlinearity prob-
lems, the Rayleigh quotient multigrid~RQMG! method26 is
used for the solution of the eigenpair corresponding to the
lowest eigenvalue. We employ this method with a recent
generalization to an arbitrary number of lowest eigenenergy
states.17 The discretized eigenvalue equation is solved by
minimizing the Rayleigh quotient^cuHuc&/^cuc& on thefin-
est grid, using the coarser grids to remove the lower-
frequency components of the error. The technique reduces
remarkably the number of relaxation sweeps needed for solv-
ing the Schro¨dinger equation. Other advantages of the real-
space solver are its flexibility with the boundary conditions
and good suitability for parallel computing.

III. WIGNER CRYSTALLIZATION OF TWO ELECTRONS

First we perform DFT calculations on two-electron po-
lygonal quantum dots by setting the spin densities equal
(n↑5n↓) to prevent the breaking of the spin symmetry. The
ensuing total energy with its decomposition to Coulomb, ki-
netic, and exchange-correlation energies is given in Fig. 1 for
a square dot. As predicted, the Coulomb energy becomes
increasingly more dominant over the kinetic energy as the
side lengthL of the dot is enlarged and the WC is expected to
occur.

The ground-state electron density distributions for the tri-
angular, square, pentagonal, and hexagonal dots at three side
lengthsL550, 100, and 400 nm are presented in Fig. 2. In
the small dots the electron density is lumped at the center,
whereas the large dots represent Wigner-molecule-like be-
havior, the density being localized near the corners in order
to minimize the dominating Coulomb interaction. The local-
ization is seen to depend strongly on the area of the dot.
Creffieldet al.4 defined the system to be a Wigner molecule,
when a local minimum first appears at the center. According
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to our calculations, this occurs in preceding geometries at
L5120, 80, 60, and 50 nm, respectively, which agree with
the exact diagonalization results. This qualitative consistency
establishes the applicability of the density-functional ap-
proach to small systems considered in this study.

We define the density parameter asr s5AA/(Np), where
A is the area of the polygon. In the case ofn corners and a
side lengthL we thus get

r s5
L

2
A n

Np
cot

p

n
.

By using this definition and applying the criterion presented
by Creffield et al.4 for the WC transition point, we findr s
;3 for the critical density in all four geometries. Akbar and
Lee13 employed the SDFT for square 2D quantum dots with
an additional harmonic confinement along thez axis. They
used a more rigorous criterion for the WC, i.e., the breaking

of connections between the density maxima, and estimated a
critical value of r s;6 for the transition point. Considering
their different definitions for the WC, this result is in a quali-
tative agreement with ourr s;3.

Intuitively, the localization of two electrons into all the
corners of a polygonal potential well might first appear as a
slightly odd result. Jefferson and Ha¨usler27 have explained
the phenomenon with effective charge-spin models. They
suggested that the low-energy manifold of a system of
strongly correlated electrons can be described properly with
an extended single-band Hubbard model. For example, in a
square two-electron dot thetV Hamiltonian transforms into
the following effective Hamiltonian:

Heff5Ẽ01~Dei2FRp/21H.c.!, ~4!

where Rp/2 rotates the electrons at opposite corners on a
diagonal byp/2. The electron pair may thus tunnel between
the ground-state configurations with an amplitude modulated
by a factorei2F. This explains the four-peak structure of the
electron density in the Wigner limit, predicted already by
Bryant.28 Diagonalization ofHeff gives a good approximation
for the ground-state energies obtained from thetV
Hamiltonian.29

IV. SYMMETRY-BROKEN SOLUTIONS

A. Two-electron dot

Next we perform the same calculations as above, but
without the restrictionn↑5n↓ , and consider still the ground-
state solution, for whichSz50. Comparison of the new total
energies with the spin-compensated results as a function of
the dot size reveals an interesting transition to a lower-energy
state. At this point, representing already a Wigner-
crystallized distribution, the spin symmetry breaks and the
result is a SDW-like ground state.

The relative energy differences between the spin-
symmetric and SDW-like solutions, corresponding to our

FIG. 1. Energy composition in a square two-electron quantum
dot as a function of the dot size.

FIG. 2. Electron densities in
polygonal two-electron quantum
dots with different sizes. In the
square, pentagon, and hexagon the
amplitudes have been multiplied
by a factor of 2.

WIGNER MOLECULES IN POLYGONAL QUANTUM . . . PHYSICAL REVIEW B67, 035326 ~2003!

035326-3



DFT and SDFT calculations, respectively, are shown in Fig.
3 for all the considered geometries. In the triangular well the
transition to the symmetry-broken ground state occurs at a
remarkably smaller size than in the other three geometries.
More precisely, for the triangle we get the transition atr s
.3.5 and for the square, pentagon, and hexagon atr s
;4.5.

In order to explain this behavior, one may first examine
the lowest Kohn-Sham energy states, shown in Fig. 4 for the
triangular and square quantum dots in the symmetry-broken
SDFT ground state, as well as in the symmetry-preserved
DFT solution. In the latter state, the threefold geometry pro-
duces more low-lying degenerate levels in the triangle than
the fourfold geometry in the square. In the SDFT calcula-
tions these degeneracies are split such that the energy levels
become pronouncedly spread in the triangular geometry,
whereby the lowest levels are pushed more efficiently down-
wards in the triangle than in the square, pentagon, and hexa-
gon. There is also a qualitative difference between the
symmetry-broken electron densities in these geometries. As

shown in Fig. 5, the spin-up and spin-down densities are
totally separated in the square, whereas in the triangle they
share a corner. In the triangular geometry, the breaking of the
spin symmetry can thus lower the energy via the exchange-
correlation and Coulomb contributions relatively more and
with a relatively smaller cost in kinetic energy than in the
square. Nevertheless, in none of these geometries does the
breaking of the spin symmetry enlarge the Fermi gap, con-
trary to SDW formation in large, parabolic quantum dots.12

The composition of the energy difference between the
symmetry-preserved and the symmetry-broken states is pre-
sented in Fig. 6 for a square dot. Naturally, the change in the

FIG. 3. Total energy differences between the DFT (E1) and
SDFT (E0) solutions in polygonal two-electron quantum dots of
four geometries.

FIG. 4. Lowest Kohn-Sham energy levels of triangular and
square two-electron quantum dots atr s;8.

FIG. 5. Difference in the electron densities between the DFT
~up! and SDFT~down! solutions in a square and triangular two-
electron quantum dot atL5400 nm. The spin alignments are
shown in the SDFT case.

FIG. 6. Composition of the energy difference between the DFT
(E1) and SDFT (E0) solutions of a square two-electron quantum
dot as a function of the dot size.
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exchange-correlation energy favors and the change in the
kinetic energy opposes the transition. The behavior of the
Coulomb energy is interesting: its strong decrease actually
initiates the breaking of the spin symmetry. However, as the
dot is made larger thanL;250 nm, the Coulomb energy is
higher in the SDW-like than in the symmetry-preserved state.
The phenomenon can be understood by having a further look
at the electron density distributions in the square as shown in
Fig. 5. In the SDFT solution, the electron density is shifted
from the region between the opposite spin directions towards
the corners. At small dot sizes this decreases the Coulomb
repulsion between the charge peaks in the adjacent corners
more than the repulsion increases inside the peaks. At large
distances the opposite is true.

B. NÌ2

Then we consider some special cases with more than two
electrons. The next geometry-independent magic configura-
tion after N52 is a six-electron dot. It represents an inter-
esting point of comparison with the results obtained for a
parabolic quantum dot in the weak-confinement limit. We
find that the spin symmetry is broken atr s.3.8, 3.1, 4.6, and
4.9 in triangular, square, pentagonal, and hexagonal quantum
dots, respectively.

In the parabolic dot withVext(r )5 1
2 v0

2r 2, the r s param-
eter can be estimated fromv0

25e2/(epe0em* r s
3AN) ~Ref.

12!. In pursuance of our earlier work for this quantum dot,11

the SDW formation was not found untilr s.6.6. The sharp
corners in the confinement seem thereby favor the transition
to the symmetry-broken state. In the six-electron case, how-
ever, the triangular geometry is more stable against the tran-
sition than the square one. A square withN56 represents an
inconvenient combination, similar to the triangle withN
52, in which the electrons cannot be evenly divided to the
corners of the polygon. As the number of the corners in-
creases further, the transition shifts to higherr s values, ap-
proaching the point of the SDW formation in the parabolic
quantum dot with a circular symmetry.

For N56, we consider also the possibility of spin polar-
ization, i.e., theSz53 state becoming the ground state in the
low-density limit. The energy differences between the polar-
ized (Sz53) and paramagnetic (Sz50) states for triangular
and square geometries as a function ofr s are shown in Fig.
7. For comparison, the SDFT results for the parabolic quan-
tum dot11 are also presented, the latter showing spin polar-
ization atr s.12. We were not able to obtain well-converged
results for the triangle and square quantum dots at larger s
values. Therefore we can only speculate by extrapolation that
polarization could occur in the triangle and square slightly
earlier than in the parabolic quantum dot.

Besides the geometry, we can study how the number of
electrons affects the breaking of spin symmetry. First we
consider a square dot withN56, 8, and 12, which all cor-
respond to completely filled shells. Figure 8 shows the en-
ergy difference between the spin symmetry-preserved and
-broken solutions as a function of ther s . For N56 andN
512, the spin symmetry breaks atr s.1.7 andr s.1.1, re-
spectively, whereas the ground state of theN58 dot remains

spin symmetric untilr s.2.8. However, the energy difference
grows rapidly in this dot, being considerably larger than in
theN56 dot atr s.10. In the large dots the SDFT solutions
show pronounced localization of the spin densities as can be
seen in Fig. 9. ForN56 and 8, the number of maxima in the
total electron densities equals number of electrons, leading to
p and p/2 rotational symmetries in these systems, respec-
tively. The spin symmetry can be considered to be broken
more completely in theN58 dot, where the density peaks
with the same spin are located on diagonally opposite verti-
ces, in contrast to theN56 dot where they lie on adjacent
corners. The interaction is thus minimized more efficiently in
theN58 dot, corresponding to a relatively rapid decrease of
the total energy shown in Fig. 8. For comparison, the results
for a triangular quantum dot withN56 are also presented. In
that system, the increase in the energy difference resembles

FIG. 7. Total energy differences between theSz53 andSz50
states in the triangular~triangle markers!, square~square markers!,
and parabolic~dashed line! six-electron quantum dots.

FIG. 8. Total energy differences between the DFT (E1) and
SDFT (E0) solutions in square quantum dots withN56, 8, and 12
~square markers!. Results for theN56 triangle quantum dot are
also given~triangle markers!.
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the behavior of theN58 square dot, reflecting a similar
symmetry-broken geometry~see Fig. 10, below!.

After the breaking of the spin symmetry, there can be seen
only four density maxima in the corners of theN56 and
N58 square quantum dots, resembling the DFT solution~the
upper row of Fig. 9!. The dot size has to be increased sub-
stantially before the maxima in the middle of the edges ap-
pear~the lower row!. We can observe the same behavior in
the N56 triangle andN510 pentagon, in both where the
spin symmetry breaks atr s.2.3. Their density distributions
at larger s values are given in Fig. 10. In all these four cases,
the number of density maxima equals the number of elec-
trons in the system. Therefore the appearance of the last
density peaks can be considered as the final stage in the onset
of the WC in the SDFT formalism.

In order to analyze the appearance of the last density
peaks, we show in Fig. 11 the lowest Kohn-Sham energy
levels for theN56 square quantum dot with side lengthsL
5100 and 400 nm, corresponding tor s;2 and 9, respec-
tively. At the smaller size, the spin symmetry has already
broken and split the DFT degeneracies. As the dot is made
larger, the two lowest states become closer to each other and
are remarkably lowered in comparison with the symmetry-
preserved DFT solution. This condensation occurs similarly

in all the dots, in which the electron density localizes to a
number of maxima coinciding with the number of electrons.
The appearance of the last density maxima thus drives the
lowest Kohn-Sham energy levels towards degeneracy. The
complete degeneracy would be the ultimate state for the
Wigner crystal. In Fig. 11 one can also notice that the Fermi
gap is considerably larger in the symmetry-broken solution
than in the symmetry-preserved case, resembling the situa-
tion in large, parabolic quantum dots.12

We have carefully determined ther s values at which the
last maxima appear and found astonishingly similar values
for the different systems studied, although the breaking of
the spin symmetry occurs on a broadr s scale. The critical
values ofr s are .3.8 and 4.0 forN56 andN58 square
dots, respectively, andr s.3.9 for both theN56 triangle and
the N510 pentagon. In the case of two-electron dots, the
above criterion for the WC cannot be applied, but the onset
of the spin-symmetry-broken state gives a reasonable esti-
mate ofr s.3.5 for the triangularN52 dot andr s.4.5 for
the otherN52 polygonal quantum dots. Our estimate ofr s
.4.0 for the WC transition point is consistent with the re-
sults for small, parabolic quantum dots.5–12 It is also clearly
smaller thanr s.7.5 obtained for the fluid-solid transition in
2DEG containing impurities.3

V. SUMMARY

We have studied the electronic properties of polygonal
two-dimensional quantum dots by employing the spin
density-functional theory. The numerical calculations are
performed with a symmetry-unrestricted real-space scheme.
Especially, we have focused on the behavior of these systems
at the weak-confinement limit, where the role of the electron-
electron interactions becomes dominating and eventually
leads to the formation of the so-called Wigner molecules.

First we have shown that the density-functional theory is
capable of reproducing, in agreement with the exact diago-
nalization studies, the behavior of the electron density in
polygonal two-electron quantum dots as the spatial size of
the potential well increases.

FIG. 9. Electron densities of the DFT~up! and SDFT~down!
solutions inN56 andN58 square quantum dots with side lengths
L5300 nm. The spin alignments are shown in the SDFT case.

FIG. 10. Electron densities atr s;8 in triangular and pentagonal
quantum dots withN56 andN510, respectively.

FIG. 11. Lowest Kohn-Sham energy levels in aN56 square
quantum dot with side lengthsL5100 and 400 nm. Solid and
dashed lines correspond to the occupied and unoccupied states, re-
spectively. The levels are nondegenerate, except the doubly degen-
erate levels denoted by the numbers~2!.
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The spin density-functional theory leads inevitably to the
breaking of the spin symmetry. For different geometries and
different electron numbers, this occurs in a wide range of
average electron densities orr s parameters. The spin-
symmetry-broken density shows for certain geometries and
electron numbers a gradual transition, such that the number
of density maxima coincides with the number of electrons.
We use the appearance of the last density maxima as the
criterion for the Wigner crystallization and obtainr s.4.0 for

the critical density. This value does not depend strongly on
the geometry nor the electron number of the quantum dot
and is in agreement with quantum Monte Carlo results.
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