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On the lower bound on the exchange-correlation energy in twodimensions
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Abstract

We study the properties of the lower bound on the exchange-correlation energy in two dimensions. First we review the derivation
of the bound and show how it can be written in a simple density-functional form. This form allows an explicit determination of the
prefactor of the bound and testing its tightness. Next we focus on finite two-dimensional systems and examine how their distance
from the bound depends on the system geometry. The results for the high-density limit suggest that a finite system that comes as
close as possible to the ultimate bound on the exchange-correlation energy has circular geometry and a weak confining potential
with a negative curvature.
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1. Introduction

The lower bound on the quantum mechanical part of the
Coulomb interaction energy, commonly known as the Lieb-
Oxford (LO) bound [1], is a key concept in many-body physics.
The bound is not only of fundamental importance for, e.g., an-
alyzing the stability of matter [2], but it has also been used
as a key constraint in the construction of several exchange-
correlation functionals within density-functional theory (DFT),
which is a standard tool in electronic-structure calculations of
atoms, molecules, solids, and various nanoscale systems [3].
Recently, substantial efforts have been directed at testing the
tightnessof the original three-dimensional LO bound [4, 5] and
in finding tighter forms [6, 7].

In view of the growing interest in two-dimensional (2D) sys-
tems, the existence and properties of the 2D form of the lower
bound on the exchange-correlation energy are of immediate rel-
evance. In this paper we review the known form of the 2D
bound and show how it can be derived from scaling relations.
We discuss the tight prefactor for the bound obtained from the
properties of the homogeneous 2D electron gas (2DEG) in the
low-density limit. We test this bound for finite 2D systems,
and, in particular, by varying the shape of the system for a sim-
ple two-electron system, we propose a set of general properties
for a finite 2D system which isas close as possibleto the lower
bound on the exchange-correlation energy.
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2. Two-dimensional bound

Lieb, Solojev, and Yngvason [8] (LSY) have rigorously de-
rived a 2D form of the LO bound, which can be expressed in
terms of the indirect part of the interaction energy:

Wxc[Ψ] ≡
〈

Ψ|V̂ee|Ψ
〉

− U[n] ≥ −C
∫

d2r n3/2(r), (1)

where V̂ee =
∑

i> j |ri − r j |−1 is the Coulombice-e interac-
tion operator,Ψ(r1, ..., rN) is any normalized 2D many-body
wave function,n(r) is the corresponding density, andU[n] is
the classical Hartree energy. For the prefactor LSY estimated
C ≤ CLSY = 192

√
2π ≈ 481.

Interestingly, the exponent 3/2 in Eq. (1) follows directly
from universal scaling properties of thee-einteraction [7]. Un-
der homogeneous 2D coordinate scaling,r → γr (0 < γ <

∞) [9] the (2N)-dimensional many-body wavefunction scales
asΨ(r1 . . . rN)→ Ψγ(r1 . . . rN) = γ2N/2

Ψ(γr1 . . . γrN), preserv-
ing normalization. This produces the number-conservingscaled
densityn(r)→ nγ(r) = γ2n(γr). Further,Wxc[Ψ] →Wxc[Ψγ] =
γWxc[Ψ], since both the Coulomb interaction and its Hartree ap-
proximation scale linearly. Denoting the exponent in Eq. (1) by
χ, we then find the relation

γWxc[Ψ] ≥ −C γ2(χ−1)
∫

d2r nχ(r), (2)

so that consistency with Eq. (1) givesχ = 3/2.
It was also conjectured in Ref. [7] by the present authors that

the prefactor can be decreased toC = 1.96 which corresponds
to a significant tightening of the original 2D bound withCLSY ≈
481. The tightest bound, i.e., the lowest exchange-correlation
energy corresponds to the 2DEG in the low-density limit, and
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henceall other 2D systems (including all real, finite systems)
are energetically above this bound. However, it remains to be
examined which type of a finite system is closest to the bound.

3. Density-functional form of the bound

Here we reformulate the bound in Eq. (1) in terms ofden-
sity functionals. The right-hand side can be written in terms
of the expression of the local-density approximation (LDA)for
the electronic exchange in 2D,

ELDA
x [n] = −A

∫

d2r n3/2(r), (3)

whereA = 4
√

2/(3
√
π). This formula has the same scaling

with respect to the density as Eq. (1). Note that Eq. (3) isex-
act for the exchange energy of the 2DEG (constantn) by con-
struction [10]. The left hand side of Eq. (1) can be written in
terms of the exchange-correlation energy as defined in DFT,
i.e., Exc[n] ≡ Wxc[n] + Tc[n] ≥ Wxc[n], whereTc is the dif-
ference between the many-body kinetic energy and the (single-
particle) Kohn-Sham kinetic energy and it is always positive.
Now, Eq. (1) becomes

Exc[n] ≥ C
A

ELDA
x [n]. (4)

For any 2D system, we can now consider the density functional

λ[n] =
Exc[n]

ELDA
x [n]

≤
C
A

(5)

with Exc[n] = Ex[n] + Ec[n]. As mentioned above, the tightest
2D bound corresponds to the 2DEG in the low-density limit
which yields themaximumvalue of Eq. (5), i.e.,λ2DEG[rs →
∞] = 1.84, wherers = 1/

√
πn is the density parameter in 2D.

4. Testing the bound

4.1. General remarks

In practice, calculation ofλ[n] for finite systems and thus
testing the bound is seriously limited by the lack of reference
data for exact exchange-correlation energies and exact densi-
ties. An exception is the 2D Hooke’s atom, i.e., a parabolic
(harmonic) quantum dot (QD) with two electrons (N = 2),
for which analytic solutions are known [11], and which yields
λ[n] ≈ 1.55 as the maximum value [7].

It is also possible to approximateλ from the exact refer-
ence data solely for the total energyEtot. This requires exact-
exchange (EXX) or Hartree-Fock calculations to obtain the ex-
change energy, which, for closed-shell systems, can be written
as

Ex[n] = −
∫

d2r
∫

d2r ′
∣

∣

∣

∑N/2
i=1 ψ

∗
i (r)ψi(r′)

∣

∣

∣

2

|r − r′|
, (6)

whereψi are Kohn-Sham (or Hartree-Fock) orbitals. The cor-
relation energy is then obtained asEc = Etot − EEXX

tot . It should
be noted that Eq. (5) becomes now an approximation due to us-
ing both exact densities and EXX densities as the input instead

of consistently using only the exact densities. Nevertheless,
tests for few-electron parabolic and square-shaped QDs based
on this strategy have led to values in the range 1.1 . λ[n] . 1.5
(Ref. [7]). The results for QDs suggest that the largest value for
λ is obtained withN = 2.

4.2. Effects of geometry

To consistently analyze the dependence ofλ[n] on the system
geometry, we focus in the following solely on the limitrs →
0. This corresponds to the noninteracting situation, sincethe
kinetic energy scales asr−2

s and the interaction energy asr−1
s

(cf. the opposite limit where interactions dominate and lead
to Wigner crystallization [12]). Now, the correlation energy is
zero, but Eq. (5) is still a well-defined quantity having a form

λ[rs→ 0] =
Ex[n]

ELDA
x [n]

. (7)

Furthermore, we setN = 2 so that the exact exchange energy
in Eq. (6) can be calculated as a simple integral over the den-
sity; in fact it is exactly minus half of the Hartree energy. To
find the density we solve the Schrödinger equation for a non-
interacting singlet state in the presence of an external confin-
ing potentialV(x, y). In the numerical procedure we use the
octopus code [13]. Note that upon the condition that the po-
tential scales homogenously with respect to the scaling param-
eterγ (see above), we can choose any prefactor in the potential,
i.e., anyζ in ζV(x, y), in order to mimic the true interacting cal-
culation in the limitrs → 0 corresponding ton → ∞. This
can be seen by consideringV(r) in the radial Schrödinger equa-
tion for N = 2, whereψi(r) ∝

√
n(r) (i = 1, 2). The form

of the equation under uniform coordinate scalingr → γr (see
above) shows thatV(r) → γ2V(γr) = γ2+αV(r), assuming that
V(r) scales homogenously withγ. Hence, a value forγ can be
found for any prefactorζ. In other words, changing the pref-
actor is equivalent to scaling of the density. And in fact, this
is the case in all potentials given below, as all of them scale
homogeneously with respect toγ. Moreover, Eq. (7) is now
independent ofγ.

First we consider a circular QD defined by a confining po-
tential of the form

Vcircular(r) = |r |α, (8)

and a square-shaped QD defined by

Vsquare(x, y) = |x|α + |y|α. (9)

Here the parameterα determines the “steepness” of the poten-
tial.

Figure 1 showsλ in the rs → 0 limit as a function ofα.
Obviously, the two potentials are the same whenα = 2, when
they actually correspond to the 2D Hooke’s atom (dotted line)
with λ ≈ 1.107. Atα > 2 we find monotonous decrease ofλ,
and the limitα→ ∞, which corresponds to the hard-wall case,
leads toλ ≈ 1.0963 and 1.0949 in circular and square QDs,
respectively. Overall, the circular potential gives higher values
of λ than the square one.

Interestingly, the highest values forλ are obtained atα < 2.
In this regime,α = 1 corresponds to a cone (pyramid) in a
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Figure 1: (color online) Values forλ in two-electron quantum dots with varying
external confining potential in the noninteracting limit.

circular (square) QD. The numerical accuracy of our eigenvalue
solver limits the investigation toα = 0.5, which actually yields
the largestλ as seen in Fig. 1. Therefore, we assume that the
maximum value forλ could be found in a circular QD atα <

0.5, when the curvature is negative, i.e.,d2V(r)/(dr2) < 0.
In Fig. 2 we consider thers→ 0 limit in an elliptic confine-

ment,
Velliptic(x, y) = βx2

+ y2/β, (10)

whereβ is related to the eccentricity, although this is not a
formal definition. Similar confinement has been used in the
QD studies in Refs. [14] and [15]. We find thatλ decreases
as a function ofβ, and the highest value can be obtained in a
parabolic system atβ = 1 (Hooke’s atom).

5. Conclusions and outlook

Summarizing the results reported in the previous section for
finite systems, we have found that in order to find a maximum
value ofλ in thers→ 0 limit, the confinement potential should
be (i) circular instead of square or elliptic, and (ii) it should
have a negative curvature. Assuming that these geometric ef-
fects carry over tors > 0, and in particular to values forrs

maximizingλ(rs), and combining these findings with previous
results for harmonic systems withN ≥ 1 andrs > 0 (Ref. [7]),
we advance the following conjecture: The maximum value of
λ in finite 2D systems, and hence the closest possible value to
the ultimate bound on the exchange-correlation energy can be
obtained in a two-particle system having circular symmetryand
a weak confining potential with a negative curvature.

Similar to what was previously observed in 3D [4, 5, 6],
smaller particle numbers in 2D produce larger values of the
functionalλ[n] (Ref. [7]). This should be compared with the
behavior of the functionλ(N), which for anyN produces an up-
per limit onλ[n] for all densities integrating to thisN. In 3D,
λ(N) is known rigorously [1, 4] to be monotonically increasing
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Figure 2: (color online) Values forλ in elliptic quantum dots in the noninter-
acting limit. The shaded figures represent schematically the symmetry of the
confining potentials.

with N. We expect this to be true also in 2D, but have not proved
it. In any case, the fact that the upper limitλ(N) increases with
N, while the actual valueλ[n] decreases is not a contradiction.
It simply means that the LO bound becomes more and more
generous asN increases, and, conversely, tighter and tighter as
N decreases.

Overall, we conclude from the investigation of the present
paper that, qualitatively and even semi-quantitatively, 2D sys-
tems behave similarly to 3D systems with respect to the appro-
priate LO bound.

Furthermore, in view of the results for the 2DEG and 2D
Hooke’s atom [7] we may assume that a finite system with
the largestλ would have rather uniform density (except at the
boundaries), andλ would be very close to the bound value
λ2DEG = 1.84. Although we cannot rigorously prove these as-
sumptions for the potential or for the density at largers, we
hope that these results will encourage similar geometric stud-
ies on finite systems where correlations are incorporated. This
would require using, e.g., the density-functional formalism for
strictly correlated electrons [16], or an inversion scheme[17],
to reconstruct the exact external potential and the corresponding
many-body problem for a given density.
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