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Stability of vortex structures in quantum dots
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We study the stability and structure of vortices emerging in two-dimensional quantum dots in high magnetic
fields. Our results obtained with exact diagonalization and density-functional calculations show that vortex
structures can be found in various confining potentials. In nonsymmetric external potentials we find off-
electron vortices that are localized giving rise to charge deficiency or holes in the electron density with rotating
currents around them. We discuss the role of quantum fluctuations and show that vortex formation is observ-
able in the energetics of the system. Our findings suggest that vortices can be used to characterize the solutions
in high magnetic fields, giving insight into the underlying internal structure of the electronic wave function.

DOI: 10.1103/PhysRevB.71.035421 PACS numberssd: 73.21.La, 73.43.2f, 85.35.Be

I. INTRODUCTION

Vortices can occur in quantum systems which are set to
rotate, for example by applying an external magnetic field or
by mechanical rotation.1–3 Using the Gross-Pitaevskii mean-
field approach, Butts and Rokhsar3 found that in a gas of
rotating bosonic atoms which are weakly interacting by a
repulsive force between them, vortices may form in a crystal-
like lattice, in much analogy to patterns that emerge in rotat-
ing superfluid helium. These vortex solutions appear as holes
svortex linesd in the particle densities, where each single zero
of the Gross-Pitaevskii wave function corresponds to a unit
vortex. With increasing angular momentum, the bosonic
cloud develops a flat shape, with more and more vortices
penetrating it.

The analysis of the electronic structure of two-
dimensional parabolic quantum dots4,5 sQDd in high mag-
netic fields has recently shown that vortices can appear also
in fermion systems showing many similarities to the boson
case.6,7 High-field solutions of the mean-field density-
functional theory revealed zeros in the electron densities,
with electron currents circulating around them, which were
interpreted as vortex clusters.6 Many-body techniques could
uncover vortex formation at high magnetic fields6,8 or at
large rotation,7 giving credence to this interpretation. With
increasing magnetic field or rotation, successive transitions
between stable vortex configurations were found.6

Even though emergence of vortices inside QD’s has been
predicted by both mean-field and exact methods the interpre-
tation of the effects of vortices needs careful analysis using
both methods. As it is characteristic for mean-field theories,
the self-consistent solutions of the Kohn-Sham equations for
fermions, as well as the solutions of the Gross-Pitaevskii
equation, being their bosonic equivalent, break the symmetry
of the quantum state. For Bose-Einstein condensates under
rotation, the Gross-Pitaevskii mean-field results were shown
to emerge as the correct leading-order approximation to ex-
act calculations.9 For Coulomb-interacting fermions, the
density-functional approach suffers from the relatively crude
approximations for the exchange-correlation energy, as well
as from the problems in using a single-configuration wave
function.10 The mean-field approach is, however, indispens-

able since analytic solutions are out of reach forNù3, and a
numerically accurate direct diagonalization is also typically
restricted to fairly small particle numbers.

The exact diagonalization studies of the vortices in fermi-
onic systems have so far concentrated on parabolically con-
fined QD’s. In this case the rotational symmetry of the
Hamiltonian implies rotational symmetry for the particle
density in the laboratory frame of reference. Therefore, to
study the appearance of vortices in those systems, a rotating
frame,11 conditional wave functions,6 or correlation functions
have to be examined. In contrast to the bosonic case,12 the
pair correlations are not very informative for fermions due to
the disturbing influence of the exchange hole. Instead, the
vortex solutions have been pinpointed either in a perturbative
approach,7 or using a conditional wave function which fixes
N−1 electrons to their most probable positions, and the wave
function of theNth electron is calculated.6 The vortices in
conditional wave functions can be seen as zeros associated
with a phase change of integer multiple of 2p for each path
enclosing a zero. This method is not unproblematic either,
since the vortices are not independent of the electron dynam-
ics. The vortex locations in the conditional wave function
depend on the positions of the fixed electron coordinates as
well as on the choice of the probing electron.

The vortices in QD’s have much in common with those in
the fractional quantum Hall effectsFQHEd. In FQHE the
system can be approximated by Laughlin wave functions
which attach additional vortex zeros at each electron.13 Both
in finite QD’s and infinite FQHE state the vortices carry
magnetic flux quanta and they cause strong electron-electron
correlations. Electronic structure calculations showed that in
quantum dots6 and quantum dot molecules14 vortices were
found to be bound on the electron positions, similarly to the
Laughlin wave functions. A single vortex bound to an elec-
tron is Pauli vortex, because it is mandated by the exclusion
principle. In general, the number of vortices on top of elec-
tron must be odd for fermions to have correct particle statis-
tics. The calculations in QD’s showed also another mecha-
nism to cause strong electron-electron correlations: solutions
were found with additional vortices moving between the
electrons.6 These off-electron vortices give rise to rotating
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currents of charge and a charge deficiency down to zero elec-
tron density at the vortex centra.

In the FQHE the off-particle zeros are usually contrasted
to on-particle zeros.15 The on-particle zeros are independent
of electron coordinates except the coordinate of the electron
to which the vortex is attached. On the other hand, the off-
particle zeros of a given particle are not necessarily off-
particle zeros of other particles. Grahamet al.16 used this fact
to conclude that off-particle zeros are not vortices in the real
sense and therefore no charge deficiency is necessarily asso-
ciated with them. Analogously to the FQHE case, the condi-
tional wave functions indicate that the electrons in quantum
dots see different positions for the off-particle vortices. In
our calculations, however, we find evidence that this is a
manifestation of zero-point motion of vortices which causes
quantum fluctuations. Our results indicate formation of
stable vortex structures where fluctuations slightly delocalize
the vortices but, nevertheless, they can be clearly seen in the
exact particle and current densities as rotating current of
charge around density minima.

In this paper we show that in quantum dots only the off-
electron zeros give rise to vortex structures in the electron
and current densities. We do this by applying nonsymmetric
confining potentials which leads to the localization of the
vortices. In the rotationally symmetric potential vortices are
not localized and they move as the electron coordinates are
changed averaging out the effect of vortices on the particle
and current densities. In rotationallynonsymmetricpoten-
tials, however, the lower symmetry should causesat least
partiald localization of vortices directly in the particle den-
sity. The breaking of the circular symmetry was used already
by Manninenet al. in the study of Wigner localization of
electrons in elliptical QD’s using exact diagonalizationsEDd
techniques.17 Here we show that the same trick can be ap-
plied to vortices which become directly visible in the exact
particle and current densities. We find that the Pauli vortices
at the electron positions do not contribute to this effect. In
our calculations even a small asymmetry in the confining
potential is sufficient to cause partial localization of the ad-
ditional vortices. These vortices can be treated as holelike
quasiparticles which have zero-point motion and therefore
they cannot be completely localized to a particular point in
space.18 We compare the exact results to the mean field so-
lutions and suggest that the results can be generalized to
arbitrary geometries. We conclude that the vortex structures
are stable and they can be used to classify the internal struc-
ture of the many-electron wave function.

II. SYSTEM CHARACTERISTICS

We considerN electrons trapped by a confining potential
Vc and subject to a perpendicular, homogeneous magnetic
field B=s0,0,Bd. The system is described by anseffective-
massd Hamiltonian

H = o
i=1

N F spi + eAd2

2m* + Vcsr idG +
e2

4pe
o
i, j

1

ur i − r ju
, s1d

whereA is the vector potential of the magnetic fieldB, m*

the effective electron mass, ande is the dielectric constant of

the medium. We apply the typical material parameters for
GaAs, namely,m* /me=0.067 ande /e0=12.4. We give the
energies and lengths in effective atomic units, i.e., in Ha*

.11.86 meV and inaB
* .9.79 nm.

At high magnetic fields, after complete polarization of the
QD, the exchange energy results in the formation of a stable
and compact structure, the so called maximum density drop-
let sMDDd.19 It is a finite-size precursor of then=1 quantum
Hall state which assigns one Pauli vortex at each electron
position. The MDD state can be found in various QD geom-
etries: in circularly confined QD’s the electrons occupy suc-
cessive angular momentum states on the lowest Landau
level, which in the parabolic case leads to a relatively flat
electron density. In rotationally nonsymmetric potential
wells, instead, the MDD window can be deduced from the
kinks in the chemical potentials. In addition, the magnetic
field for the MDD formation can be accurately predicted
from the number of flux quanta penetrating the QD.20

As the magnetic field is increased, the compact electron
droplet is squeezed and eventually the repulsive interactions
between the fermions cause the MDD to reconstruct. For
parabolically-confined QD’s, different scenarios of the re-
construction have been suggested. Chamon and Wen21 found
a “stripe phase” where a lump of electrons separates from the
MDD at a distance<2,B, where,B=Î" /eB is the magnetic
length. Goldmann and Renn introducted projected necklace
states which they found to be lower in energy than the states
found by Chamon and Wen.22 Geometrically unrestricted
Hartree-Fock23 and CSDFTsRefs. 24 and 25d studies sug-
gested that such edge reconstruction would occur with a
modulated charge density wave along the edge. For a suffi-
ciently small Zeeman gap, this polarized reconstruction may
be preempted by edge spin textures.26,27

The ED shows instability with respect to addition of in-
ternal holes as discussed by Yang and MacDonald.28 These
holes were recently reinterpreted as vortices in mean-field
density-functional calculations.6 They were found also fur-
ther away from the dot center where the electron density is
low. Vortices behave often like classicalslocalizedd particles
in the mean-field approach and the vortices appear as rotat-
ing currents of charge with a zero in the particle density at
the vortex centra. Several charge-density-wave states that
mix different eigenstates can also be interpreted as solutions
describing a transport of a vortex to the center of a QD.25

Formation of vortices causes usually a broken symmetry in
the mean-field particle density, even when the Hamiltonian is
azimuthally symmetric.

Tavernieret al.8 studied distribution of zeros in the exact
many-body wave function of systems containing up to 4
electrons. They compared the results with the rotating-
electron-moleculesREMd wave functions.29 In the regime
where the effect of the external confining potential can be
neglected, the rotating electron molecule model can provide
an intuitive description of the Wigner-localized electrons.
Tavernier and co-workers8 found out, however, that the REM
model is unable to predict the clustering of vortices near
electrons.
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III. NUMERICAL RESULTS

A. Mean-field description of vortex solutions

In order to solve the many-body Schrödinger equation
corresponding to the Hamiltonians1d, we first work in the
mean-field picture and apply the spin-density-functional
theorysSDFTd. For the self-consistent solution of the Kohn-
Sham equations we employ a real-space scheme,30 where the
external confining potentialVc can be arbitrarily chosen
without symmetry restrictions. The exchange-correlation ef-
fects are taken into account using the local spin-density ap-
proximationsLSDAd.31 At high magnetic fields, the effect of
currents in the exchange-correlation potentials becomes non-
negligible, and the current-spin-density-functional theory
sCSDFTdsRef. 32d gives a slightly better approximation to
the ground state energy.33 The CSDFT is computationally
more demanding than the SDFT but according to our test
calculations qualitatively similar vortex structures were
found to emerge in both formalisms. We apply the SDFT
throughout this paper, since we found in these tests that it
captures all the essential physics of these systems at much
lower computational work.

The confinement is chosen to be a two-dimensional har-
monic oscillator potential with elliptic deformation, defined
as

Vcsr d = 1
2"v0

2Sdx2 +
1

d
y2D , s2d

wherex and y are the major axes of the ellipse,"v is the
confinement strength, andd is the eccentricity. For compari-
son, we also apply a rectangular hard-wall confinement, de-
fined in Ref. 20. The parameter describing the deformation
of the confining potential in this case is the side-length ratio
b=Lx/Ly.

In the post-MDD domain, the SDFT predicts the forma-
tion of vortices inside the QD’s. This is visualized in Fig. 1
showing solutions containing up to three vortices in elliptic
sa–dd and rectangularse–hd six-electron QD’s. The eccentric-
ity d and the side-length ratiob have been set to 2 in these
systems, respectively. As the vortices repel each other, the
MDD states shown in Figs. 1sad and 1sed reconstruct into
states that enclose a linear vortex pattern along the longest
major axis. There is a remarkable qualitative similarity in the
high magnetic field behavior of these systems. However, a
linear vortex cluster requires a rather large eccentricitysside-
length ratiod of the QD. In the elliptic case with a confine-
ment strength of"v=0.5 Ha*, the triple-vortex configuration
changes from triangular to linear whend is increased to
about 1.4.

Figure 1 shows currents induced by the magnetic field.
The current is flowing clockwise around the vortices and
anticlockwise on the edges of the dot. The reversal of the
current near the vortex core is due to inner circulation of the
electrons.38 The number of vortices in the QD increases with
the magnetic field, and the current loops of the vortices start
to overlap. This causes formation of giant current loops
which comprise several vortices.

Figure 2 shows the chemical potentials,msNd=EsNd
−EsN−1d, of a rectangular sb=2d QD containing N

=7, . . . ,16 electrons. Interestingly, the regime beyond the
MDD is characterized by periodic oscillations inm as a func-
tion of the magnetic fieldB. The peak positions in the oscil-
lations match with the transitions between adjacent vortex
states and mark the emergence of additional vortices one-by-
one in the QD, presented forN=6 in Figs. 1sfd–1shd. The
oscillations get stronger as the number of electrons increases.
The origin of the oscillations lies in the large reduction of the

FIG. 1. Spin-density-functional-theorysSDFTd electron densi-
ties and currents in an ellipticsa–dd and rectangularse–hd six-
electron quantum dot in different magnetic fields. The potential pa-
rameters in effective a.u. ares"v ,dd=s0.5,2d and sLx,Lyd
=s2Î2p ,Î2pd in elliptic and rectangular dots, respectively. The
increasing of the magnetic field leads to a formation of a vortex
pattern beyond the maximum density dropletsMDDd solution sB
=12 Td in both geometries.

FIG. 2. Chemical potentials forN-electron rectangularsb=2d
quantum dots as a function of the magnetic field. The dot is ex-
pected to be fully spin-polarized. After the MDD window there are
oscillations in the chemical potential which matches with the ap-
pearing of additional vortices one-by-one into the quantum dot.
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Coulomb energy in connection with the vortex formation and
the coexistent pronounced localization of the electrons. The
oscillations are also visible in the total magnetization,M =
−]Etot/]B, as shown in Fig. 4 in Ref. 20. The magnetization
in rectangular and elliptic six-electron QD’s are compared in
Fig. 3.

In elliptic QD’s the oscillations are weaker and less regu-
lar than in their rectangular counterparts where the size of the
dot is a constant. The soft-wall confinement makes the dot
more flexible in minimizing the total energy. These results
are in accord with the exact diagonalization results by Gold-
mann and Renn,22 who calculated the chemical potentials of
QD’s in parabolic and nonparabolic “coffee-cup” shaped
confinements. The latter confinement has a hard wall simi-
larly to our rectangular potential well. Goldmann and Renn
found kinks in the chemical potentials and the kink sizes
increase with the electron number. Moreover, the kinks in the
nonparabolically confined systems were found to be much
larger than in the parabolically confined systems.

The results above suggest that the vortex formation is a
considerable energetic effect that could be detected in appro-
priate experiments. Oosterkampet al.34 measured the Cou-
lomb oscillations peaksschemical potentialsd in transport ex-
periments for vertical QD’s and observed additional phase
transitions beyond the MDD. They found oscillations in
chemical potentials and the amplitude of these oscillations
increased with the electron number. This data is consistent
with our calculations and could indicate vortex formation in
quantum dots. A direct interpretation of their result is, how-
ever, difficult due to the unknown shape of the QD sample
and its eventual sensitivity to disturbance in the experiment.
Moreover, the experimental oscillations may also indicate
other phenomena, such as the formation of a spin texture, for
example.26

Conditional wave functions can be introduced not only for
the analysis of the exact many-body wave function, as de-
scribed in Ref. 6, but they are also useful to analyze the
SDFT results. We use an auxiliary single-determinant func-
tion of the Kohn-Sham orbitals which emulates the exact
conditional wave function.25 This allows a study of the
SDFT solutions where the electron density may have several
minima, but the vortices are not directly localized to fixed

positions. This may be due to the mixing of several eigen-
states as shown in Ref. 25. For instance, the electron densi-
ties for the SDFT states at 18 T and 21 T show no density
zeros. However, the corresponding conditional single-
determinant functions show vortices near the fixed electron
ring ssee Fig. 4d.

In this picture Pauli vortices can be seen on the fixed
electrons, and additional vortices are found between the elec-
trons.

The electron densities of the ellipticald=2 dot in Fig. 4
show localization of both electrons and vortices. The elec-
tron localization results in six density maxima which is con-
sistent with earlier SDFT calculations of elliptically confined
QD’s.17 The additional vortices give rise to charge deficiency
in the electron density as seen in the right panel of Fig. 4.
According to the SDFT results, the intensity of the vortex
localization strongly depends on the magnetic field. In the
above example, the localization of vortices is partial with
pronounced minima in the electron density in solutions of up
to two vortices. As the magnetic field is increased further, the
localization becomes complete i.e. the electron density van-
ishes at the vortex core. This reflects the decrease of the
magnetic length,B.

The results indicate that only the additional vortices be-
tween the electrons have a charge deficiency associated with
them. Conditional wave functions6 and the total electron den-

FIG. 3. Magnetization of a rectangularssolid lined and elliptical
sdashed lined six-electron quantum dot as a function of the magnetic
field. The ellipse eccentricityd and the rectangle side-length ratiob
are both set to 2. The numbers in the figure denote the correponding
number of vortex holes in the electronic structure.

FIG. 4. SDFT solutions of six-electron, ellipticallysd=2d con-
fined quantum dots at different magnetic fields. The confinement
strength is set to"v=0.5 Ha*. Left panel: Conditional single-
determinant wave functions of the Kohn-Sham states. The fixed
electrons are marked with crosses and the probing electron is the
rightmost electron at the top. The contours show the logarithmic
electron density of the probe electron and the grey-scale show the
phase of the wave function. The phase changes fromp to −p at the
lines where shadowing changes from the darkest grey to white. The
vortices that cause charge deficiency in the center of the dot are
marked with + signs. Right panel: Electron densities show vortex
holes and partial localization of the electrons forming six density
maxima.
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sities calculated with the SDFT show that there are vortices
also further away from the dot center. In this region the elec-
tron density is usually a tiny fraction of the maximum elec-
tron density. The quantum fluctuations smooth out the effect
of these external vortices and they cannot be directly ob-
served in the exact particle density, even though the rota-
tional symmetry is broken.

B. Exact diagonalization for an elliptic dot

We compare now the above results obtained within SDFT
to those of a direct numerical diagonalization of the many-
body Hamiltonian matrix. We hereby focus on small particle
numbers and magnetic fields high enough such that the de-
scription is mostly restricted to what in the isotropic case
would correspond to the lowest Landau level. In order to
display the internal structure of the many-body wave func-
tion, we break the spherical symmetry of the dot by applying
the elliptical confining potentialfEq. s2dg. We assume full
polarization of the electron droplet, and neglect the Zeeman
energy.

For the deformed case,dÞ1, where the total angular mo-
mentum is not any more a good quantum numberswhile,
however, we still have good parityd, the most appropriate and
efficient basis set spanning the Fock space is formed by the
eigenstates to the single-particle part of the Hamiltonians1d.
These must be calculated numerically. We determine theM
lowest ones by directly diagonalizing the single-particle part
of the Hamiltonian in a basis consisting of a sufficient num-
ber of corresponding Fock-Darwin35 states atd=1, which are
known analytically. Once the single-particle basis is at dis-
posal, the Fock states are generated by sampling over all
possibilities to setN particles on theseM states. From this
sampling, only those Fock states with defined parity and con-
figuration energy36 less than a defined cut-off energy, are
chosen for diagonalization. The cut-off energy was adjusted
to restrict the number of Fock statessi.e., the matrix dimen-
siond to be less than about 50 000. We limit the single-
particle basis dimension toMø44 and use numerical inte-
gration for calculating the Coulomb matrix elements. The
many-body Hamiltonians1d is then diagonalized in the ob-
tained subspace. Densitieskn̂sr dl and real currentskĵ sr dl are
finally calculated in order to compare the broken-symmetry
solutions of the ED directly to the mean-field results. Here,

n̂sr d = o
i

dsr − r id s3d

is the density operator. The real current is obtained by taking
the expectation value of

ĵ sr d = ĵ psr d +
e

m* Asr dn̂sr d, s4d

where

ĵ psr d = o
i

− i"

2m* fdsr − r id¹i + ¹idsr − r idg s5d

is the paramagnetic current operator.
We should note at this point that for obtaining an accurate

description of the total energy of the system, using only 44

lowest single-particle states is not sufficient for a full con-
vergence of the total energy. However, the relative energy
differences and the geometrical structure of the electron and
current densities of the ground-state and lowest-lying states
were converged within this basis set. Since our aim is the
comparison of the broken-symmetry many-body with the
mean-field solutions, rather than a detailed discussion of en-
ergy spectra and excitation energies, this truncation appeared
reasonable.

Figure 5 shows the electron and current densities,kn̂sr dl
and kĵ sr dl, of the ground state and first excited state for an
elliptic dot with eccentricity d=1.1 and magnetic field
13.4 T. Both states have parityp=−1, and the first excited
state is separated from the ground state by only 7.7 mHa*.
The ground state shows a vortex pattern around two minima
in the density and its total angular momentum isL=−25.4".
The leading single-particle configuration7 of the Fock state
has the formu1001111100. . .l, with amplitudeucLu2=0.4. The
first excited state shows a pronounced single vortex at the
dot center, with the current circulating clockwise around the
origin. The hole shows the characteristic cone shape for a
vortex and appears nearly localized at the dot center. The
leading configuration of the Fock states isu011111100. . .l
with amplitudeucLu2=0.7. The second excited state has parity
p= +1 and is separated by a gap of 53 mHa* from the
ground state. It has angular momentumL=−20.4" and no
clear vortex structure.

Figure 6 shows the densities and density contours for the
casesd=1.1 sad andd=1.2 sbd at an increased magnetic field
of 17 T. Both states have parityp=−1 and angular momen-
tum L=−26.7" sad and L=−28.5" sbd. In both cases, the
current circulates around fairly pronounced minima in the
charge density, representing two vortices at the dot center.
When the eccentricity increases fromd=1.1 sad to d=1.2 sbd,
the electrons begin to arrange themselves in the form of a
Wigner molecule with counterclockwise rotation of the cur-
rent around themaximaof the electron density, and clock-

FIG. 5. Electron densitiessgrey scaled and current densitiessar-
rowsd of exact diagonalizationsEDd solutions for an elliptical quan-
tum dot withd=1.1. The number of electrons is 6.sad The ground
state with a two-vortex structure.sbd The first excited state with a
single vortex at the origin. The right column shows the correspond-
ing electron densities at the longest major axis of the ellipse. The
confinement strength is"v=0.5 Ha* and the magnetic field isB
=13.4 T.
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wise rotation around the vorticessi.e., the minima in the
densityd, as it was also observed atd=1.1. The reversal of
the current near the vortex core is consistent with the SDFT
results.

It is important to note here that the ground state in both
cases is a state withp= +1, which forsad is 34 mHa* and for
sbd is 7.6 mHa* lower in energy. No states were found in
between these two lowest states withp= +1 andp=−1, i.e.
both states shown insad and sbd appeared as first excited
states, respectively. The fact that the energetic sequence of
the states changes with increasing field is, however, not sur-
prising: It is well known5 from the ED studies of circularly
symmetric QD’s, that the overall structure of the spectrum is
independent of the magnetic field, the role of which is
mainly to tilt the spectrum so that the minimum energy is at
a different statessee Manninenet al.,17 and Maksym and
Chakraborty37d.

The above results from the ED are compared with the
mean-field calculation in Fig. 6scd for d=1.2. The results
appear fairly similar. The largest difference naturally appears
due to the presence of quantum fluctuations which destroy
the complete localization of the vortices, i.e. the exact den-
sity at the vortex center still is about one-third of the maxi-
mum density, while in the mean-field result the density at the
vortex center is reduced to zero.

Increasing the eccentricity still further, the localization of
electrons leads to the formation of a charge-density-wavelike
crystal. Vortices in between the classical electron positions

become even more apparent. Figure 7 shows the ED electron
densitiessgrey scaled and current densitiessarrowsd for larger
eccentricityd=2. The magnetic field issad 11 T, sbd 17 T,
and scd 22 T, andp=−1 in all cases.sThe p= +1 states are
slightly higher in energy.d The solution at 11 T shows the
MDD, and vortices form at higher magnetic fields. These
solutions can be compared to the SDFT solutions in Fig. 1.
There is again a qualitative agreement, but now the ED
shows stronger localization of electrons at both ends of the
dot. While now the Fock states show much mixing and a
clear dominance of a few single configurations could not be
observed, the general trend is very similar to the SDFT result
shown above in Fig. 1.

IV. SUMMARY

We have found that in noncircular confinements the vor-
tices can be directly seen in the exact diagonalization elec-
tron densities as holes or charge deficiency around which the
current is circulating. The vortex structures are stable against
fluctuations and even a slight asymmetry in the confining
potential cause the vortices to show up in the exact many-
body electron density as density minima. However, due to
zero-point motion of vortices there are no zeros in the elec-
tron density. The spin-density-functional calculations are in
accord with these results. They predict analogous vortex for-
mation also in rectangular hard-wall quantum dots suggest-
ing that the results can be generalized to a wide variety of
geometries. The chemical potentials of the rectangular dot
show features in the energetics that could be directly com-
pared to the experiments.

FIG. 6. Electron densitiessgray scaled and current densitiessar-
rowsd for two-vortex solutions in elliptical QD’s. The number of
electrons is 6.sad Exact diagonalizationsEDd result atd=1.1. sbd
ED result atd=1.2. scd SDFT result atd=1.2. The inset shows the
corresponding electron densities at the longest major axis of the
ellipse. The vortices are localized in the SDFT solution, and the ED
solution shows slight delocalization due to quantum fluctuations.
The confinement strength is"v=0.5 Ha* and the magnetic field is
B=17 T.

FIG. 7. Electron densitiessgrey scaled and current densitiessar-
rowsd of ED solutions for elliptical quantum dots withd=2. The
magnetic field issad 17 T, sbd 21 T, andscd 22 T. The inset shows
the corresponding electron densities at the longest major axis of the
ellipse. The number of electrons is 6 and the confinement strength is
"v=0.5 Ha*.
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In the light of these results it is justified to speak of vor-
tices as real quasiparticles which might have observable ef-
fects in the measurements. Vortices are not independent of
the electron dynamics, but they can be used to characterize
the solutions in high magnetic fields which gives insight of
the underlying internal structure of the electronic wave func-
tion. Prediction of vortex formation in hard-wall potentials
gives also credence to the assumption that the vortices are
robust and largely independent of the chosen geometry of the
system. Therefore they seem to be universal features of the
physics of the two-dimensional interacting fermion systems
in strong magnetic fields above the maximum density droplet
formation.

To conclude, we briefly compare these results tobosonic
systems, where vortex formation in rotating Bose-Einstein
condensates has been much discussed both theoretically and
experimentally. There are apparent similarities between the

bosonic and fermionic case. In the composite fermion model
bosons can be turned into fermionssand the other way
aroundd by attaching fictious magnetic fluxes on top of elec-
trons. Vortex formation appears as a universal phenomenon
of quasi-two-dimensional quantum systems suggesting a
synthetic theoretical rationale behind the phenomena.39
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