3,744 research outputs found

    Few-body decay and recombination in nuclear astrophysics

    Get PDF
    Three-body continuum problems are investigated for light nuclei of astrophysical relevance. We focus on three-body decays of resonances or recombination via resonances or the continuum background. The concepts of widths, decay mechanisms and dynamic evolution are discussed. We also discuss results for the triple α\alpha decay in connection with 2+2^+ resonances and density and temperature dependence rates of recombination into light nuclei from α\alpha-particles and neutrons.Comment: 9 pages, 8 figures. Proceedings of the 21st European Few Body Conference held in Salamanca (Spain) in August-September 201

    Effect of deformation on two-neutrino double beta decay matrix elements

    Full text link
    We study the effect of deformation on the two-neutrino double beta decay for ground state to ground state transitions in all the nuclei whose half-lives have been measured. Our theoretical framework is a deformed QRPA based in Woods-Saxon or Hartree-Fock mean fields. We are able to reproduce at the same time the main characteristics of the two single beta branches, as well as the double beta matrix elements. We find a suppression of the double beta matrix element with respect to the spherical case when the parent and daughter nuclei have different deformations

    Momentum distributions of α\alpha-particles from decaying low-lying 12^{12}C-resonances

    Get PDF
    The complex scaled hyperspherical adiabatic expansion method is used to compute momentum and energy distributions of the three α\alpha-particles emerging from the decay of low-lying 12^{12}C-resonances. The large distance continuum properties of the wave functions are crucial and must be accurately calculated. We discuss separately decays of natural parity states: two 0+0^+, one 1−1^{-}, three 2+2^+, one 3−3^-, two 4+4^+, one 6+6^+, and one of each of unnatural parity, 1+1^{+}, 2−2^-, 3+3^+, 4−4^-. The lowest natural parity state of each JπJ^{\pi} decays predominantly sequentially via the 8^{8}Be ground state whereas other states including unnatural parity states predominantly decay directly to the continuum. We present Dalitz plots and systematic detailed momentum correlations of the emerging α\alpha-particles.Comment: 11 pages, 7 figures, accepted for publication in Physical Review

    Three-body decays: structure, decay mechanism and fragment properties

    Full text link
    We discuss the three-body decay mechanisms of many-body resonances. R-matrix sequential description is compared with full Faddeev computation. The role of the angular momentum and boson symmetries is also studied. As an illustration we show the computed α\alpha-particle energy distribution after the decay of 12C(1^+) resonance at 12.7 MeV.Comment: 4 pages, 3 figures. Proceedings of the workshop "Critical Stability of Few-Body Quantum Systems" 200

    Nuclear shape dependence of Gamow-Teller distributions in neutron-deficient Pb isotopes

    Get PDF
    We study Gamow-Teller strength distributions in the neutron-deficient even isotopes (184-194)Pb in a search for signatures of deformation. The microscopic formalism used is based on a deformed quasiparticle random phase approximation (QRPA) approach, which involves a self-consistent quasiparticle deformed Skyrme Hartree-Fock (HF) basis and residual spin-isospin forces in both the particle-hole and particle-particle channels. By analyzing the sensitivity of the Gamow-Teller strength distributions to the various ingredients in the formalism, we conclude that the beta-decay of these isotopes could be a useful tool to look for fingerprints of nuclear deformation.Comment: 20 pages, 11 figures. To be published in Physical Review

    Few-body quantum method in a dd-dimensional space

    Full text link
    In this work we investigate the continuous confinement of quantum systems from three to two dimensions. Two different methods will be used and related. In the first one the confinement is achieved by putting the system under the effect of an external field. This method is conceptually simple, although, due to the presence of the external field, its numerical implementation can become rather cumbersome, especially when the system is highly confined. In the second method the external field is not used, and it simply considers the spatial dimension dd as a parameter that changes continuously between the ordinary integer values. In this way the numerical effort is absorbed in a modified strength of the centrifugal barrier. Then the technique required to obtain the wave function of the confined system is precisely the same as needed in ordinary three dimensional calculations without any confinement potential. The case of a two-body system squeezed from three to two dimensions is considered, and used to provide a translation between all the quantities in the two methods. Finally we point out perspectives for applications on more particles, different spatial dimensions, and other confinement potentials.Comment: To be published in Physics Letters

    Above threshold s-wave resonances illustrated by the 1/2+^+ states in 9^9Be and 9^9B

    Get PDF
    We solve the persistent problem of the structure of the lowest 1/2+1/2^+ resonance in 9^9Be which is important to bridge the A=8 gap in nucleosynthesis in stars. We show that the state is a genuine three-body resonance even though it decays entirely into neutron-8^8Be relative s-waves. The necessary barrier is created by "dynamical" evolution of the wave function as the short-distance α\alpha-5^5He structure is changed into the large-distance n-8^8Be structure. This decay mechanism leads to a width about two times smaller than table values. The previous interpretations as a virtual state or a two-body resonance are incorrect. The isobaric analog 1/2+^+ state in 9^9B is found to have energy and width in the vicinity of 2.0 MeV and 1.5 MeV, respectively. We also predict another 1/2+^+ resonance in 9^9B with similar energy and width.Comment: To be published in Physics Letters

    alpha particle momentum distributions from 12C decaying resonances

    Full text link
    The computed α\alpha particle momentum distributions from the decay of low-lying 12^{12}C resonances are shown. The wave function of the decaying fragments is computed by means of the complex scaled hyperspherical adiabatic expansion method. The large-distance part of the wave functions is crucial and has to be accurately calculated. We discuss energy distributions, angular distributions and Dalitz plots for the 4+4^+, 1+1^+ and 4−4^- states of 12^{12}C.Comment: 6 pages, 4 figures. Proceedings of the SOTANCP2008 conference held in Strasbourg in May 200

    Direct and sequential radiative three-body reaction rates at low temperatures

    Get PDF
    We investigate the low-temperature reaction rates for radiative capture processes of three particles. We compare direct and sequential capture mechanisms and rates using realistic phenomenological parametrizations of the corresponding photodissociation cross sections.Energy conservation prohibits sequential capture for energies smaller than that of the intermediate two-body structure. A finite width or a finite temperature allows this capture mechanism. We study generic effects of positions and widths of two- and three-body resonances for very low temperatures. We focus on nuclear reactions relevant for astrophysics, and we illustrate with realistic estimates for the α\alpha-α\alpha-α\alpha and α\alpha-α\alpha-nn radiative capture processes. The direct capture mechanism leads to reaction rates which for temperatures smaller than 0.1 GK can be several orders of magnitude larger than those of the NACRE compilation.Comment: To be published in European Physical Journal
    • 

    corecore