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We solve the persistent problem of the structure of the lowest 1/2+ resonance in 9Be which is important
to bridge the A = 8 gap in nucleosynthesis in stars. We show that the state is a genuine three-body
resonance even though it decays entirely into neutron–8Be relative s-waves. The necessary barrier is
created by “dynamical” evolution of the wave function as the short-distance α-5He structure is changed
into the large-distance n-8Be structure. This decay mechanism leads to a width about two times smaller
than table values. The previous interpretations as a virtual state or a two-body resonance are incorrect.
The isobaric analog 1/2+ state in 9B is found to have energy and width in the vicinity of 2.0 MeV and
1.5 MeV, respectively. We also predict another 1/2+ resonance in 9B with similar energy and width.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

Bound states, resonances and other continuum states are well
understood and described for two particles interacting through
a potential. By weakening the attraction of the potential bound
states are pushed upwards into the continuum as resonances or
virtual states when a barrier is present or absent, respectively [1].
For neutral particles virtual states arise for s-waves whereas reso-
nances emerge for higher partial waves. Decreasing the attraction
further until the resonance energy is above the potential barrier
leads to an increase of the resonance width. Correspondingly the
related S-matrix pole moves in the complex energy plane as a res-
onance with non-vanishing imaginary part.

For three particles interacting via two- and three-body poten-
tials the continuum structures can be much more complicated due
to combinations of the different structures for the three two-body
subsystems [2,3]. One intriguing possibility arises when one of the
two-body subsystems has a low-lying s-wave resonance produced
by a confining Coulomb barrier, and the third neutral particle has
dominating s-wave attractions from the first two particles. Even
when all higher partial waves are vanishingly small, the structure
of the three-body continuum state is a priori not easily determined
or described.

Let us assume that the two-body resonance is very narrow
(long-lived) and the three-body energy is above zero but less than
the two-body resonance energy. Then the three-body continuum
state resembles a two-body bound state of the third particle and
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the composite resonance of the two first particles. The lifetime
would be determined by the lifetime of the two-body resonance.
When the three-body energy is pushed upwards above the two-
body threshold by decreasing the attraction, the corresponding
structure can be described as a two- or three-body virtual state
or resonance [2,1].

The purpose of the present Letter is first to determine in gen-
eral which structure arises, and second specifically to solve the
long-standing controversy of the 9Be(1/2+) continuum state. This
state is important in the nuclear synthesis of light nuclei in stars
[6,4,5], and has therefore received lots of attention both theoreti-
cally [6,7,9,8] and experimentally [10–12,14,15,13]. In a measure-
ment of photo disintegration the cross section is interpreted and
parametrized via R-matrix analysis as one neutron and the 8Be
ground state in a two-body s-wave resonance [11]. This seems to
be against the two-body quantum mechanical description as such
a state cannot survive as a resonance. In another interpretation
the same neutron–8Be system is described as a virtual state [9]
but the resulting cross section does not reproduce the measure-
ment [11].

The 9Be(1/2+) structure is most often assumed to be one neu-
tron and the 8Be ground state [10] but sometimes also the α +
α + n recombination reaction is assumed to proceed by α-capture
on the 5He ground state [6]. It is apparently very difficult to avoid
assumptions of two-body sequential structures and processes via
subsystems of either 8Be or 5He. Interestingly a two-center Born–
Oppenheimer model based on symmetries alone may combine
these structures as in [7] where the 1/2+ is lowest at large dis-
tance whereas a 3/2− state is lowest at small distance. We shall
allow an entirely general three-body structure without a priori as-
sumptions of substructures or decay mechanisms.
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2. Formulation

Let us consider three composite structures as point-like parti-
cles denoted n, α1 and α2. The two mass scaled Jacobi vector co-
ordinates, (x, y), can be substituted by hyperspherical coordinates
{ρ,α,Ωx,Ωy}, where (Ωx,Ωy) describe the directions of (x, y),

ρ = √
x2 + y2 and α = arctan(x/y), see [3]. We solve this three-

body problem by use of adiabatic hyperspherical expansion of the
Faddeev equations, i.e. the angular equations are solved for each ρ ,
providing a set of angular eigenfunctions φn and their correspond-
ing eigenvalues λn . The three-body wave function is then written
as ψ = 1

ρ5/2

∑
n fn(ρ)φn(x, y), where n labels each of the adia-

batic terms. The radial functions fn(ρ) are obtained after solving
a coupled set of radial equations where the λn angular eigenval-
ues enter as effective adiabatic potentials. The coupling between
the different adiabatic terms appears through the functions Pnn′ (ρ)

and Q nn′ (ρ) defined for instance in [3].
Each adiabatic potential describes a specific relative structure

of the three particles for a given root mean square radius, ρ , with
wave function φ and eigenvalue λ. When only one adiabatic po-
tential is considered, the coupled set of radial equations reduces
to

[
− d2

dρ2
+ λ(ρ) + 15/4

ρ2
− Q (ρ) − 2m(E − V 3b(ρ))

h̄2

]
f (ρ) = 0,

(1)

where Q is the diagonal coupling term Q nn , which is in general
not zero (contrary to what happens with Pnn′ , whose diagonal
terms are zero). V 3b(ρ) is the three-body potential usually used in
three-body calculations to take into account all those effects that
go beyond the two-body interactions. The total wave function, ψ ,
and Q are given by

ψ = 1

ρ5/2
f (ρ)φ(x, y), Q (ρ) =

〈
φ

∣∣∣∣ ∂2

∂ρ2

∣∣∣∣φ
〉
Ω

. (2)

The expectation value is over angular coordinates, Ω , excluding
only ρ . When only s-waves contribute for both x and y the angu-
lar wave function φ only depends on ρ and α. For short-range at-
tractive two-body interactions the angular eigenvalue λ(ρ) would
be monotonously increasing towards a constant asymptotic value.

3. Narrow two-body resonance

When the α1 − α2 two-body s-wave interaction supports a
bound state, the adiabatic potential approaches the bound state
energy at large distance. This reflects a two-body structure corre-
sponding to particle n far away from the α1 − α2 bound state. For
less α1 − α2 attraction this state moves into the continuum. With
a confining Coulomb barrier from repelling charges on the parti-
cles, the state would appear as a resonance at low energy E2. The
adiabatic potential would then approach the positive value equal
to E2 corresponding to the large-distance two-body structure of n
far away from the resonance α1 −α2. We illustrate in Fig. 1 by the
specific examples, 9Be(α + α + n) and 9B(α + α + p).

This description is only correct when the two-body resonance
width Γ2 is very small and the coupling to the three-body contin-
uum states can be ignored. In general the first adiabatic potential
is crossed by numerous others while ρ increases. However, the
couplings are negligibly small for three-body energies E until dis-
tances ρ � 9

√
E − E2/Γ2 where the energies are in MeV and ρ in

fm. Thus for small Γ2, say eV or keV, the couplings for moderate
energies below 1 MeV can be neglected far outside the distance
Fig. 1. The two lowest energy levels for 9Be (a), and 9B (b), and the resonance ener-
gies of the corresponding two-body subsystems [17]. For 9B the quoted 1/2+ state
corresponds to the estimation obtained in this work. The widths of the resonances
are represented by the shadowed regions.

where the short-range n− (α1 −α2) interaction has vanished. Then
the system can effectively be described as a two-body system until
the two-body resonance eventually decays.

Let us now consider the three-body system with interactions
leading to a three-body state of positive energy Er but below E2.
Effectively this is a bound n − (α1 − α2) two-body state, or rather
a resonance decaying precisely with the width Γr = Γ2 of the
α1 − α2 resonance. For less n − (α1 − α2) s-wave attraction this
two-body bound state moves into the continuum above E2. The
expectation is that the proper description is as a virtual state with
no width in contrast to a resonance [9]. However, this is not nec-
essarily true.

4. The 9Be(1/2+) example

The low-lying states of 9Be are expected to be well described
as cluster states consisting of one neutron and two α-particles
[16]. The α − α interaction, including short range attraction and
Coulomb repulsion, produces a low-lying s-wave two-body res-
onance at 0.0918 MeV with a width around 9 eV. Adding one
neutron in s-waves leads to angular momentum and parity 1/2+
of the resulting three-body system. Such a state is listed in the
tables of energies [17] at an excitation energy of 1.684 MeV, or
0.110 MeV above threshold, with a width of 0.217 MeV (see the
upper part of Fig. 1(a)). Thus the state is above the two-body res-
onance energy by 0.018 MeV and s-waves are most likely the
dominating composition.

The listed width is much larger than the distance to the two-
body resonance threshold and even about two times larger than
the three-body energy itself. It is a peculiar resonance struc-
ture which apparently extends into the bound state region below
the threshold. These values are consistent with photodissociation
cross section measurements and the entangled R-matrix analysis
of an a priory assumed resonance [11]. The fitting parameters are
position- and energy-dependent width of a two-body neutron–8Be
resonance of s-wave character. Several years prior to this analysis
it was suggested that the state should be understood as a virtual
state and the photodissociation cross section correspondingly an-
alyzed [9]. However, this does not reproduce the measurements
in [11].
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Fig. 2. Lowest adiabatic potentials for 9Be and 9B as a function of the hyperradius.
The inset shows the 9Be lowest potential with and without the rearrangement cou-
pling term Q .

5. Three-body results for 9Be(1/2+)

The shortcomings of many previous methods are the initial as-
sumption of two-body character of this structure. Since the final
decay products are three particles we proceed to treat the system
as a three-body system. We use the well established nucleon–
nucleon and α–nucleon interactions from [18,19].

The adiabatic potentials produced through the adiabatic hy-
perspherical expansion method for these quantum numbers are
shown in Fig. 2. The higher ones show pronounced peaks at about
15–18 fm. The origin of the peaks is in the crossing between dif-
ferent angular eigenvalues. In particular, the Q -functions in the
effective potentials, (see Eqs. (1) and (2)), are responsible for the
behavior shown in the figure in the vicinity of the crossings. These
couplings involve second derivatives of the adiabatic eigenfunc-
tions, and they therefore reflect restructuring of these functions.
The lowest potential has a dominating attractive pocket at small
distance. After hyperradii ρ larger than 12–14 fm the potential
stabilizes at the resonance energy of 0.091 keV for the 8Be ground
state. This stable region continues until interrupted by the cross-
ings with the (infinitely many) higher potentials. The first of these
crossings occurs at about ρ = 130 fm.

An attractive pocket and a constant large distance potential
without any barrier in the transition region is not able to support
a resonance of finite width at energies above the large distance
asymptotic value. However, inclusion of the coupling term Q (see
Eq. (1)), provides an otherwise totally absent barrier as seen in the
inset of Fig. 2. This all decisive barrier then arises from a strong
ρ dependence of the intrinsic (angular) wave function φ, as seen
from the definition in Eq. (2).

The three-body restructuring can be seen from Fig. 3 where the
small distance structure of ρ less than 9 fm is p-waves between
neutron and α-particles. This is due to the p3/2-resonance which
provides the main part of the attraction. As ρ increases above
10 fm this partial wave is rapidly substituted by s-waves which
are energetically more advantageous at larger distance where the
attraction vanishes and the centrifugal barrier dominates. At much
larger distances an increasing number of partial waves contribute
corresponding to the neutron far away from the two-body system
of two α-particles in the spatially much smaller s-wave resonance,
i.e. 8Be in the ground state.

The combined result of the lowest adiabatic potential and the
diagonal coupling is able to support a resonance. We compute
the energy and width numerically as the S-matrix pole found by
complex scaling [20]. By adding a structureless short-range poten-
Fig. 3. The partial wave decomposition of the lowest adiabatic angular wave function
for 9Be (thick) and 9B (thin) as function of hyperradius ρ . The partial angular mo-
menta lx and l y correspond to the coordinates indicated in the figure. For lx = l y = 2
and lx = l y = 3 the curves for 9Be and 9B cannot be distinguished.

Fig. 4. Width of the resonances for 9Be and 9B as function of the energy which is
varied through the strength V 0 of the three-body potential. The solid and dashed
curves are the WKB results with a knocking rate corresponding to Γ0 = 0.6 MeV
(Γ = Γ0e−2S ) for both nuclei [21]. The dot-dashed curve results from complex scal-
ing for 9B. The square and the circle are from the R-matrix analysis in [11] and the
table in [17], respectively. The down triangle is obtained by direct fit of the cross
section in [11]. The triangles at about 2 MeV are the first and second resonances
of 9B.

tial (V 3b = V 0 exp(−ρ2/ρ2
0 ), with ρ0 = 5 fm), which contributes

only in the pocket region, we can move the resonance energy by
modifying the V 0 strength but without disturbing the resonance
structure. This is useful both because the three-body computation
cannot place the resonance at precisely the correct measured en-
ergy, and because the width is strongly dependent on the height
and thickness of the barrier at the correct energy.

In Fig. 4 we show the width as a function of the resonance
energy. The solid line shows the WKB estimate for 9Be. For an
energy just above the threshold energy of the 8Be ground state
(0.0918 MeV) the width is about 0.1 MeV. This agrees with the
result obtained by fitting the measured peak in the photodissocia-
tion cross section [11] (triangle down). The width increases slowly
up to about 0.7 MeV at the top of the barrier. At smaller energies
the width is vanishingly small due to the thick barrier provided by
the 8Be structure.

The complex scaling computations for 9Be present numerical
difficulties due to the fast increase of the width for energies above
0.0918 MeV. To get an estimate we have instead attached a unit
charge to the neutron, which immediately leads to the results
shown in Fig. 4 for the 1/2+ analog state in 9B. A continuous de-
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crease of the charge leads us back to 9Be which is approached and
finally reached by extrapolation. Unfortunately the accuracy only
allows the conclusion that the width at an energy of 0.11 MeV is
larger than 0.06 MeV and most likely around 0.1 MeV but 0.2 MeV
is not numerically excluded. The inaccuracy is due to the very
large width compared to the distance to the threshold. Then the
poles computed by the complex scaling method are very difficult
to distinguish from the continuum background. This becomes in-
creasingly worse as the charge of the neutron is decreased from
unity to zero where our present techniques prohibits a clean re-
sult.

Comparison to widths obtained in previous works requires pre-
cision in the definitions of a resonance. The ambiguities arise
when the resonance is broad and then necessarily asymmetric.
To account for the energy dependence of the decay probability
the R-matrix theory employs an energy dependent width. This
immediately implies that any number claimed to describe the
width must be an average of some kind. The “observed” width in
R-matrix theory is in [22] most directly related to the full width
at half maximum, or the S-matrix pole, and then adopted as the
width in tables of resonance properties [17]. The results quoted
in [11] and [22] are shown in Fig. 4 by the square and the circle,
respectively.

Our computed three-body resonance width is from the WKB
tunneling and crude extrapolations from the imaginary value of
the pole of the S-matrix. Our estimate is very inaccurate but we
expect a value of about 0.1 MeV which is only about half the
“observed” table value from R-matrix theory. This rather large dis-
crepancy can be due to inaccuracies in the complex scaling extrap-
olation to zero charge of the neutron, or the WKB approximation
of only one adiabatic potential combined with the uncertainty in
the knocking rate estimate. However, we believe that the main rea-
son is that our three-body barrier, which entirely is responsible for
the width, arises from three-body restructuring effects inherently
impossible to include in the R-matrix analysis. An unambiguous
settlement of this accuracy issue would require the use of another
method dedicated to precise width computations near threshold.

Attempts to settle the issue experimentally face the problems
inherent to relatively very broad resonances. Population in a reac-
tion or beta-decay provide information about lifetime, which nec-
essarily is an average, or details about decay probability as function
of energy, which requires a model for analyzing the data. The di-
rect measurements in photo dissociation [11] reveal an asymmet-
ric peak with a width of about 0.1 MeV. This is consistent with
corresponding computations in the present model with a method
to compute strength functions by discretization of the three-body
continuum [23].

6. Three-body results for 9B(1/2+)

The isobaric analog state should exist in 9B but so far it has
never been found. The influence of the additional Coulomb inter-
action in the present fragile case could be substantial and perhaps
even destructive. The corresponding low energy three-body and
two-body levels are shown in Fig. 1(b). To discuss this problem
we also show in Fig. 2 the corresponding lowest adiabatic poten-
tial for 9B. The additional Coulomb repulsion due to the proton in
9B has a relatively small effect. At small distances the pocket is as
pronounced but almost entirely above zero energy. The barrier is
higher and thicker at small energy where the adiabatic potential
itself already exhibits a small barrier. The same constant energy
is approached at larger energies again corresponding to 8Be in
addition to the Coulomb tail from the proton. The partial wave
decomposition in Fig. 3 resembles the 9Be results with a tendency
towards an increase of higher partial waves due to the additional
Coulomb potential.

In Fig. 4 we show the WKB estimate (dashed line) and the
resonance width obtained after a complex scaling calculation (dot-
dashed line). In both cases the width is small even above the 8Be
ground state energy due to the additional adiabatic barrier and the
extended Coulomb tail. However, the precise value of the energy
depends on the three-body potential used in Eq. (1). A minimum
value for the attractive strength of the three-body force can be
obtained by placing the 9Be resonance at the 8Be resonance en-
ergy threshold. Using this three-body force we can then estimate
a lower limit for the 1/2+ resonance in 9B, which is found to be
slightly below 2 MeV with a width of 1.3 MeV (left triangle up in
the figure).

This resonance is accompanied by a second state at 2.05 MeV
with a width of 1.6 MeV (right triangle up in the figure). This
second resonance is very stable, basically independent of the struc-
tureless three-body force. Therefore, further decrease of the three-
body attraction in V 3b would eventually make this second reso-
nance at 2.05 MeV the first 1/2+ excited state. The two resonances
are dominated by s- and p-waves between proton and α-particle,
respectively. Crudely speaking these two structures correspond to
8Be + proton and 5Li + α. Since the large-distance p-wave prop-
erties essentially are unaffected by the three-body potential the
second resonance remains close to the same energy. Thus the un-
observed resonance in 9B may in fact be either two or a combina-
tion of two resonances. In any case we expect genuine three-body
structures with an energy around 2 MeV and a width in the vicin-
ity of 1.5 MeV.

7. Discussion and conclusions

The 1/2+ continuum structures of 9Be and 9B are computed as
genuine three-body resonances. The energies are above the thresh-
old for forming the ground state 8Be-resonance and the partial
wave decompositions are dominated by s-waves in the Jacobi co-
ordinates connecting the two α-particles and their center-of-mass
and the nucleon. Nevertheless the Faddeev component correspond-
ing to the other Jacobi coordinate presents a very different partial
wave decomposition where the α-nucleon p3/2 attraction main-
tain p-waves at hyperradii smaller than 9 fm rapidly changing into
s-waves at 10 fm. This “dynamic evolution” from α-5He at small
distance to neutron–8Be at intermediate and large distance recon-
ciles the two limits for the resonance structure. The restructuring
of the wave function results in a potential barrier similar to an
above barrier reflection at a discontinuity.

The structures are then genuine three-body resonances mix-
ing s- and p-waves at small distances while at large distances
turning into a two-body system entirely of s-waves for a nucleon
and 8Be in the unbound ground state. The deceiving appearance
as a two-body virtual state is incorrect. The interpretation as a
two-body nucleon–8Be resonance is also incorrect since the small-
distance structure is of genuine three-body character and this is
the very reason for the existence of a barrier allowing the ap-
pearance of resonance features. Furthermore the parameters from
R-matrix analysis of the experimental data is misleading because
of the incorrect but crucial assumption of the existence of a two-
body nucleon–8Be resonance.

The astrophysical nαα recombination rate is probably unaf-
fected provided the corresponding cross section is obtained by pre-
cisely the same parametrization for the measured inverse process
of photodisintegration. The problem only seems to arise when a
different procedure is applied in these mutually inverse processes.
However, all resonance decays do not necessarily proceed through
two-body channels.
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The implication is that the decay mechanism is entirely through
the 8Be ground state as assumed in most previous publications.
However, the present tabulated value of the resonance width
emerges through an averaging procedure of data analysis and
parametrization of a decaying two-body structure. The energy de-
pendent width arising from the R-matrix interpretation as a two-
body structure is suspicious since the three-body effects respon-
sible for the barrier and the width are not included in the anal-
ysis. The true resonance lifetime should be related to the tunnel-
ing probability through the barrier arising from restructuring the
three-body wave function. The width is more likely directly found
from the peak in the measured cross section. We conclude that the
controversy over the 1/2+ continuum structures of 9Be and 9B is
resolved in a full three-body model.

Acknowledgements

We are grateful for many clarifying discussions with H.O.U.
Fynbo and K. Riisager. This work was partly supported by DGI of
MEC (Spain), contract No. FIS2008-01301.

References

[1] E. Garrido, D.V. Fedorov, A.S. Jensen, Eur. Phys. J. A 25 (2005) 365.
[2] W. Glöckle, H. Witala, D. Hüber, K. Kamada, J. Golak, Phys. Rep. 274 (1996) 107.
[3] E. Nielsen, D.V. Fedorov, A.S. Jensen, E. Garrido, Phys. Rep. 347 (2001) 373.
[4] M. Arnould, K. Takahashi, Rep. Progr. Phys. 62 (1999) 395.
[5] L. Buchmann, E. Gete, J.C. Chow, J.D. King, D.F. Measday, Phys. Rev. C 63 (2001)

034303.
[6] J. Görres, H. Herndl, I.J. Thompson, M. Wiescher, Phys. Rev. C 52 (1995)

2231.
[7] W. von Oertzen, Z. Phys. A 354 (1996) 37.
[8] F.C. Barker, H.O.U. Fynbo, Nucl. Phys. A 776 (2006) 52.
[9] V.D. Efros, J.M. Bang, Eur. Phys. J. A 4 (1999) 3.

[10] C. Angulo, et al., Nucl. Phys. A 656 (1999) 3.
[11] K. Sumiyoshi, H. Utsunomiya, S. Goko, T. Kajino, Nucl. Phys. A 709 (2002)

467.
[12] I. Mukha, et al., Nucl. Phys. A 758 (2005) 647c.
[13] P. Neumann-Cosel, private communication.
[14] P. Papka, et al., Phys. Rev. C 75 (2007) 045803.
[15] T.A. Brown, et al., Phys. Rev. C 76 (2007) 054605.
[16] E. Cravo, Phys. Rev. C 54 (1996) 523.
[17] D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R.

Weller, Nucl. Phys. A 745 (2004) 155.
[18] R. Álvarez-Rodríguez, A.S. Jensen, E. Garrido, D.V. Fedorov, H.O.U. Fynbo, Phys.

Rev. C 77 (2008) 064305;
R. Álvarez-Rodríguez, A.S. Jensen, E. Garrido, D.V. Fedorov, H.O.U. Fynbo, Eur.
Phys. J. A 31 (2007) 303.

[19] C. Romero-Redondo, E. Garrido, D.V. Fedorov, A.S. Jensen, Phys. Rev. C 77
(2008) 054313.

[20] D.V. Fedorov, E. Garrido, A.S. Jensen, Few-body Syst. 33 (2003) 153.
[21] E. Garrido, D.V. Fedorov, A.S. Jensen, Nucl. Phys. A 733 (2004) 85.
[22] D.R. Tilley, C.M. Cheves, J.L. Godwin, G.M. Hale, H.M. Hofmann, J.H. Kelley, C.G.

Sheu, H.R. Weller, Nucl. Phys. A 708 (2002) 3.
[23] R. de Diego, E. Garrido, D.V. Fedorov, A.S. Jensen, Phys. Rev. C 77 (2008) 024001.


	Above threshold s-wave resonances illustrated by the 1/2+ states in 9Be and 9B
	Introduction
	Formulation
	Narrow two-body resonance
	The 9Be(1/2+) example
	Three-body results for 9Be(1/2+)
	Three-body results for 9B(1/2+)
	Discussion and conclusions
	Acknowledgements
	References


