11 research outputs found

    Modulation of NTC frequencies by Pc5 ULF pulsations : experimental test of the generation mechanism and magnetoseismology of the emitting surface

    Get PDF
    Nonthermal continuum (NTC) radiation is believed to be emitted by the conversion of an electrostatic wave into an electromagnetic one, which takes place at the Earth's magnetic equator. It is generally accepted that the frequency of the electrostatic wave at the source meets a local characteristic frequency placed in between two multiples of the electron cyclotron frequency, fce, which results in emission of a narrow band frequency element. In an event on 14 August 2003, we compare oscillations of the central frequency of distinct NTC frequency elements observed from Cluster orbiting near perigee, with simultaneous Pc5 Ultra Low Frequency (ULF) pulsations in the magnetic field observed from the same platform. The latter magnetic perturbations are interpreted as magnetohydrodynamic poloidal waves, where fundamental and second harmonic modes coexist. The NTC oscillation and the fundamental wave have similar periods, but are phase shifted by a quarter of period. From the correlation between both signals, and the proximity of the NTC source (localized via triangulation) with Cluster, we infer that the poloidal perturbations are spatially uniform between the source and the satellites. From the phase shift between signals, we conclude that the electrostatic wave which converts into NTC is mainly governed by the plasma density, affected by movements of the magnetic field lines. Furthermore, we demonstrate that the observations can be used to perform a magnetoseismology of the emitting surface. The results show a steepening of the plasmapause density profile near the satellites, which can be responsible for the generation of NTC emission

    Amplitude variations of electron cyclotron harmonic waves

    No full text
    Electron cyclotron harmonic (ECH) instabilities just outside the plasmapause and at frequencies near the cold upper hybrid frequency are a common feature of the Earth\u27s magnetosphere. These waves which have virtually no magnetic component, are believed to have an important role in the generation of weak diffuse aurora1,2. They are able to interact strongly with electrons in the hundred eV to several keV energy range which can result in pitch angle scattering and precipitation on magnetic field lines which map down into the auroral zone. On the dayside magnetosphere these waves can exhibit large amplitude variations of 30–40 dB and can also exist at steady amplitudes on time scales of the order of tens of seconds. Here we seek an explanation for the sporadic nature of such instabilities by performing linear stability calculations and extending the technique used in the accompanying paper3

    Wave-particle interactions in the equatorial source region of whistler-mode emissions

    Get PDF
    Wave-particle interactions can play a key role in the process of transfer of energy between different electron populations in the outer Van Allen radiation belt. We present a case study of wave-particle interactions in the equatorial source region of whistler-mode emissions. We select measurements of the Cluster spacecraft when these emissions are observed in the form of random hiss with only occasional discrete chorus wave packets, and where the wave propagation properties are very similar to previously analyzed cases of whistler-mode chorus. We observe a positive divergence of the Poynting flux at minima of the magnetic field modulus along the magnetic field lines, indicating the central position of the source. In this region we perform a linear stability analysis based on the locally measured electron phase space densities. We find two unstable electron populations. The first of them consists of energy-dispersed and highly anisotropic injected electrons at energies of a few hundreds eV to a few keV, with the perpendicular temperature more than 10 times higher than the parallel temperature with respect to the magnetic field line. Another unstable population is formed by trapped electrons at energies above 10 keV. We show that the injected electrons at lower energies can be responsible for a part of the waves that propagate obliquely at frequencies above one half of the electron cyclotron frequency. Our model of the trapped electrons at higher energies gives insufficient growth of the waves below one half of the electron cyclotron frequency and a nonlinear generation mechanism might be necessary to explain their presence even in this simple case
    corecore