229 research outputs found

    Breakfast glycaemic index and exercise: combined effects on adolescents' cognition

    Get PDF
    The aim of the present study was to examine the combined effects of breakfast glycaemic index (GI) and a mid-morning bout of exercise on adolescents’ cognitive function. Participants were randomly allocated to a high or low GI breakfast group in a mixed research design, where each participant completed two experimental trials (exercise and resting). Forty-two adolescents (12.4±0.5 years old), undertook a bout of exercise (ten repeats of level one of the multi-stage fitness test; exercise trial) or continued to rest (resting trial) following consumption of either a high or low GI breakfast. A battery of cognitive function tests (visual search test, Stroop test and Sternberg paradigm) was completed 30 min before and 45 min following the exercise. Average heart rate during exercise was 170±15 beats.min-1. On the complex level of the Stroop test, response times improved across the morning following the low GI breakfast on both the exercise and resting trials, though the improvement was greatest on the exercise trial. However, response times only improved on the resting trial following the high GI breakfast (p = 0.012). On the 5 letter level of the Sternberg paradigm, response times improved across the morning following the low GI breakfast (regardless of exercise) and only on the exercise trial following the high GI breakfast (p = 0.019). The findings of the present study suggest that the combined effects of breakfast GI and exercise in adolescents depend upon the component of cognitive function examined. A low GI breakfast and mid-morning bout of exercise were individually beneficial for response times on the Sternberg paradigm, whereas they conferred additional benefits for response times on the Stroop test

    Resting pulmonary haemodynamics and shunting: a comparison of sea-level inhabitants to high altitude Sherpas

    Get PDF
    The incidence of blood flow through intracardiac shunt and intrapulmonary arteriovenous anastomoses (IPAVA) may differ between Sherpas permanently residing at high altitude (HA) and sea-level (SL) inhabitants as a result of evolutionary pressure to improve gas exchange and/or resting pulmonary haemodynamics. To test this hypothesis we compared sea-level inhabitants at SL (SL-SL; n = 17), during acute isocapnic hypoxia (SL-HX; n = 7) and following 3 weeks at 5050 m (SL-HA; n = 8 non-PFO subjects) to Sherpas at 5050 m (n = 14). inline image, heart rate, pulmonary artery systolic pressure (PASP) and cardiac index (Qi) were measured during 5 min of room air breathing at SL and HA, during 20 min of isocapnic hypoxia (SL-HX; inline image = 47 mmHg) and during 5 min of hyperoxia (inline image = 1.0; Sherpas only). Intracardiac shunt and IPAVA blood flow was evaluated by agitated saline contrast echocardiography. Although PASP was similar between groups at HA (Sherpas: 30.0 ± 6.0 mmHg; SL-HA: 32.7 ± 4.2 mmHg; P = 0.27), it was greater than SL-SL (19.4 ± 2.1 mmHg; P < 0.001). The proportion of subjects with intracardiac shunt was similar between groups (SL-SL: 41%; Sherpas: 50%). In the remaining subjects, IPAVA blood flow was found in 100% of subjects during acute isocapnic hypoxia at SL, but in only 4 of 7 Sherpas and 1 of 8 SL-HA subjects at rest. In conclusion, differences in resting pulmonary vascular regulation, intracardiac shunt and IPAVA blood flow do not appear to account for any adaptation to HA in Sherpas. Despite elevated pulmonary pressures and profound hypoxaemia, IPAVA blood flow in all subjects at HA was lower than expected compared to acute normobaric hypoxia

    Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea

    Get PDF
    Background: Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA) and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2) during repetitive apneas translate into oxygen partial pressure (PtO2) in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA. Methods: Twenty-four male Sprague-Dawley rats (300-350 g) were used. Sixteen rats were anesthetized and noninvasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fastresponse oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2 and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results: Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE] and minimum values [83.9 ± 1.3%]). By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg) was significantly lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011). In contrast to SpO2, the minimum and maximum values of PtO2 gradually increased (p < 0.001) over the course of the 60 min studied. After 60 min, the maximum (51.9 ± 3.9 mmHg) and minimum (43.7 ± 3.8 mmHg) values of PtO2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions: These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of O2 supply induced by obstructive apneas mimicking OSA

    Chemoreceptor responsiveness at sea level does not predict the pulmonary pressure response to high altitude

    Get PDF
    The hypoxic ventilatory response (HVR) at sea level (SL) is moderately predictive of the change in pulmonary artery systolic pressure (PASP) to acute normobaric hypoxia. However, because of progressive changes in the chemoreflex control of breathing and acid-base balance at high altitude (HA), HVR at SL may not predict PASP at HA. We hypothesized that resting peripheral oxyhemoglobin saturation (SpO2) at HA would correlate better than HVR at SL to PASP at HA. In 20 participants at SL, we measured normobaric, isocapnic HVR (L/min·-%SpO2 -1) and resting PASP using echocardiography. Both resting SpO2 and PASP measures were repeated on day 2 (n=10), days 4-8 (n=12), and 2-3 weeks (n=8) after arrival at 5050m. These data were also collected at 5050m on life-long HA residents (Sherpa; n=21). Compared to SL, SpO2 decreased from 98.6 to 80.5% (P<0.001), while PASP increased from 21.7 to 34.0mmHg (P<0.001) after 2-3 weeks at 5050m. Isocapnic HVR at SL was not related to SpO2 or PASP at any time point at 5050m (all P>0.05). Sherpa had lower PASP (P<0.01) than lowlanders on days 4-8 despite similar SpO2. Upon correction for hematocrit, Sherpa PASP was not different from lowlanders at SL, but lower than lowlanders at all HA time points. At 5050m, whilst SpO2 was not related to PASP in lowlanders at any point (all R2=0.50), there was a weak relationship in the Sherpa (R2=0.16; P=0.07). We conclude that neither HVR at SL nor resting SpO2 at HA correlates with elevations in PASP at HA

    Hypoxia, not pulmonary vascular pressure induces blood flow through intrapulmonary arteriovenous anastomoses

    Get PDF
    Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) is increased with exposure to acute hypoxia and has been associated with pulmonary artery systolic pressure (PASP). We aimed to determine the direct relationship between blood flow through IPAVA and PASP in 10 participants with no detectable intracardiac shunt by comparing: (1) isocapnic hypoxia (control); (2) isocapnic hypoxia with oral administration of acetazolamide (AZ; 250 mg, three times-a-day for 48 h) to prevent increases in PASP, and (3) isocapnic hypoxia with AZ and 8.4% NaHCO3 infusion (AZ+HCO3-) to control for AZ-induced acidosis. Isocapnic hypoxia (20 min) was maintained by end-tidal forcing, blood flow through IPAVA was determined by agitated saline contrast echocardiography and PASP was estimated by Doppler ultrasound. Arterial blood samples were collected at rest before each isocapnic-hypoxia condition to determine pH, [HCO3-], and PaCO2. AZ decreased pH (-0.08 ± 0.01), [HCO3-] (-7.1 ± 0.7 mmol/l), and PaCO2 (-4.5 ± 1.4 mmHg; p<0.01), while intravenous NaHCO3 restored arterial blood gas parameters to control levels. Although PASP increased from baseline in all three hypoxic conditions (p<0.05), a main effect of condition expressed an 11 ± 2% reduction in PASP from control (p<0.001) following AZ administration while intravenous NaHCO3 partially restored the PASP response to isocapnic hypoxia. Blood flow through IPAVA increased during exposure to isocapnic hypoxia (p<0.01) and was unrelated to PASP, cardiac output and pulmonary vascular resistance for all conditions. In conclusion, isocapnic hypoxia induces blood flow through IPAVA independent of changes in PASP and the influence of AZ on the PASP response to isocapnic hypoxia is dependent upon the H+ concentration or PaCO2. Abbreviations list: AZ, acetazolamide; FEV1, forced expiratory volume in 1 second; FIO2, fraction of inspired oxygen; FVC, forced vital capacity; Hb, total haemoglobin; HPV, hypoxic pulmonary vasoconstriction; HR, heart rate; IPAVA, intrapulmonary arteriovenous anastomoses; MAP, mean arterial pressure; PASP, pulmonary artery systolic pressure; PETCO2, end-tidal partial pressure of carbon dioxide; PETO2, end-tidal partial pressure of oxygen; PFO, patent foramen ovale; PVR, pulmonary vascular resistance; Q̇c, cardiac output; RVOT, right ventricular outflow tract; SpO2, oxyhaemoglobin saturation; SV, stroke volume; TRV, tricuspid regurgitant velocity; V̇E, minute ventilation; VTI, velocity-time integra
    • 

    corecore