2,970 research outputs found

    Veterans Health Administration Mental Health Program Evaluation Capstone Report

    Get PDF
    The research described in this report was sponsored by the U.S. Department of Veterans Affairs and was conducted by Altarum and RAND Health, a division of the RAND Corporation.The RAND/Altarum team conducted this study between August 2006 and November 2010.The evaluation represents the most comprehensive evaluation of a mental health care system ever undertaken. The evaluation focused on the quality of care delivered to veterans with one or more of five mental health or substance abuse diagnoses: (1) schizophrenia; (2) bipolar disorder; (3) posttraumatic stress disorder (PTSD); (4) major depressive disorder; (5) substance use disorder.The evaluation's results should be of interest to policymakers in the areas of national defense and veterans' affairs, to mental health professionals, and to veterans and other audiences interested in veterans' health issues

    Organized condensation of worm-like chains

    Full text link
    We present results relevant to the equilibrium organization of DNA strands of arbitrary length interacting with a spherical organizing center, suggestive of DNA-histone complexation in nucleosomes. We obtain a rich phase diagram in which a wrapping state is transformed into a complex multi-leafed, rosette structure as the adhesion energy is reduced. The statistical mechanics of the "melting" of a rosette can be mapped into an exactly soluble one-dimensional many-body problem.Comment: 15 pages, 2 figures in a pdf fil

    Intrinsic chaos and external noise in population dynamics

    Full text link
    We address the problem of the relative importance of the intrinsic chaos and the external noise in determining the complexity of population dynamics. We use a recently proposed method for studying the complexity of nonlinear random dynamical systems. The new measure of complexity is defined in terms of the average number of bits per time-unit necessary to specify the sequence generated by the system. This measure coincides with the rate of divergence of nearby trajectories under two different realizations of the noise. In particular, we show that the complexity of a nonlinear time-series model constructed from sheep populations comes completely from the environmental variations. However, in other situations, intrinsic chaos can be the crucial factor. This method can be applied to many other systems in biology and physics.Comment: 13 pages, Elsevier styl

    Screening by symmetry of long-range hydrodynamic interactions of polymers confined in sheets

    Full text link
    Hydrodynamic forces may significantly affect the motion of polymers. In sheet-like cavities, such as the cell's cytoplasm and microfluidic channels, the hydrodynamic forces are long-range. It is therefore expected that that hydrodynamic interactions will dominate the motion of polymers in sheets and will be manifested by Zimm-like scaling. Quite the opposite, we note here that although the hydrodynamic forces are long-range their overall effect on the motion of polymers vanishes due to the symmetry of the two-dimensional flow. As a result, the predicted scaling of experimental observables such as the diffusion coefficient or the rotational diffusion time is Rouse-like, in accord with recent experiments. The effective screening validates the use of the non-interacting blobs picture for polymers confined in a sheet.Comment: http://www.weizmann.ac.il/complex/tlusty/papers/Macromolecules2006.pdf http://pubs.acs.org/doi/abs/10.1021/ma060251

    Charge-Fluctuation-Induced Non-analytic Bending Rigidity

    Full text link
    In this Letter, we consider a neutral system of mobile positive and negative charges confined on the surface of curved films. This may be an appropriate model for: i) a highly charged membrane whose counterions are confined to a sheath near its surface; ii) a membrane composed of an equimolar mixture of anionic and cationic surfactants in aqueous solution. We find that the charge fluctuations contribute a non-analytic term to the bending rigidity that varies logarithmically with the radius of curvature. This may lead to spontaneous vesicle formation, which is indeed observed in similar systems.Comment: Revtex, 9 pages, no figures, submitted to PR

    Smoothening Transition of a Two-Dimensional Pressurized Polymer Ring

    Full text link
    We revisit the problem of a two-dimensional polymer ring subject to an inflating pressure differential. The ring is modeled as a freely jointed closed chain of N monomers. Using a Flory argument, mean-field calculation and Monte Carlo simulations, we show that at a critical pressure, pcN1p_c \sim N^{-1}, the ring undergoes a second-order phase transition from a crumpled, random-walk state, where its mean area scales as N \sim N, to a smooth state with N2\sim N^2. The transition belongs to the mean-field universality class. At the critical point a new state of polymer statistics is found, in which N3/2\sim N^{3/2}. For p>>pcp>>p_c we use a transfer-matrix calculation to derive exact expressions for the properties of the smooth state.Comment: 9 pages, 8 figure

    Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument Simulators in Climate Models

    Get PDF
    The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds are represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This work examines the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. We focus on the stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15% of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations
    corecore