216 research outputs found

    Radon precursor studies in Iceland

    Get PDF
    N/

    Modelling the 20th and 21st century evolution of Hoffellsjökull glacier, SE-Vatnajökull, Iceland

    Get PDF
    The Little Ice Age maximum extent of glaciers in Iceland was reached about 1890 AD and most glaciers in the country have retreated during the 20th century. A model for the surface mass balance and the flow of glaciers is used to reconstruct the 20th century retreat history of Hoffellsjökull, a south-flowing outlet glacier of the ice cap Vatnajökull, which is located close to the southeastern coast of Iceland. The bedrock topography was surveyed with radio-echo soundings in 2001. A wealth of data are available to force and constrain the model, e.g. surface elevation maps from ~1890, 1936, 1946, 1989, 2001, 2008 and 2010, mass balance observations conducted in 1936–1938 and after 2001, energy balance measurements after 2001, and glacier surface velocity derived by kinematic and differential GPS surveys and correlation of SPOT5 images. The approximately 20% volume loss of this glacier in the period 1895–2010 is realistically simulated with the model. After calibration of the model with past observations, it is used to simulate the future response of the glacier during the 21st century. The mass balance model was forced with an ensemble of temperature and precipitation scenarios derived from 10 global and 3 regional climate model simulations using the A1B emission scenario. If the average climate of 2000–2009 is maintained into the future, the volume of the glacier is projected to be reduced by 30% with respect to the present at the end of this century. If the climate warms, as suggested by most of the climate change scenarios, the model projects this glacier to almost disappear by the end of the 21st century. Runoff from the glacier is predicted to increase for the next 30–40 yr and decrease after that as a consequence of the diminishing ice-covered area

    Longitudinal changes in inflammatory biomarkers among patients with COVID-19 : A nationwide study in Iceland

    Get PDF
    Funding Information: This study was supported by Landspitali University Hospital Science Fund. Publisher Copyright: © 2022 Acta Anaesthesiologica Scandinavica Foundation.Objectives: All SARS-CoV-2-positive persons in Iceland were prospectively monitored and those who required outpatient evaluation or were admitted to hospital underwent protocolized evaluation that included a standardized panel of biomarkers. The aim was to describe longitudinal changes in inflammatory biomarkers throughout the infection period of patients with COVID-19 requiring different levels of care. Design: Registry-based study. Setting: Nationwide study in Iceland. Patients: All individuals who tested positive for SARS-CoV-2 by real-time polymerase chain reaction (RT-PCR) from February 28 to December 31, 2020 in Iceland and had undergone blood tests between 5 days before and 21 days following onset of symptoms. Measurements and Main Results: Data were collected from the electronic medical record system of Landspitali–The National University Hospital of Iceland. Data analyses were descriptive and the evolution of biomarkers was visualized using locally weighted scatterplot smoothing curves stratified by the worst clinical outcome experienced by the patient: outpatient evaluation only, hospitalization, and either intensive care unit (ICU) admission or death. Of 571 included patients, 310 (54.3%) only required outpatient evaluation or treatment, 202 (35.4%) were hospitalized, and 59 (10.3%) were either admitted to the ICU or died. An early and persistent separation of the mean lymphocyte count and plasma C-reactive protein (CRP) and ferritin levels was observed between the three outcome groups, which occurred prior to hospitalization for those who later were admitted to ICU or died. Lower lymphocyte count, and higher CRP and ferritin levels correlated with worse clinical outcomes. Patients who were either admitted to the ICU or died had sustained higher white blood cell and neutrophil counts, and elevated plasma levels of procalcitonin and D-dimer compared with the other groups. Conclusions: Lymphocyte count and plasma CRP and ferritin levels might be suitable parameters to assess disease severity early during COVID-19 and may serve as predictors of worse outcome.Peer reviewe

    Individual risk assessment and information technology to optimise screening frequency for diabetic retinopathy.

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links field.AIMS/HYPOTHESIS: The aim of this study was to reduce the frequency of diabetic eye-screening visits, while maintaining safety, by using information technology and individualised risk assessment to determine screening intervals. METHODS: A mathematical algorithm was created based on epidemiological data on risk factors for diabetic retinopathy. Through a website, www.risk.is , the algorithm receives clinical data, including type and duration of diabetes, HbA(1c) or mean blood glucose, blood pressure and the presence and grade of retinopathy. These data are used to calculate risk for sight-threatening retinopathy for each individual's worse eye over time. A risk margin is defined and the algorithm recommends the screening interval for each patient with standardised risk of developing sight-threatening retinopathy (STR) within the screening interval. We set the risk margin so that the same number of patients develop STR within the screening interval with either fixed annual screening or our individualised screening system. The database for diabetic retinopathy at the Department of Ophthalmology, Aarhus University Hospital, Denmark, was used to empirically test the efficacy of the algorithm. Clinical data exist for 5,199 patients for 20 years and this allows testing of the algorithm in a prospective manner. RESULTS: In the Danish diabetes database, the algorithm recommends screening intervals ranging from 6 to 60 months with a mean of 29 months. This is 59% fewer visits than with fixed annual screening. This amounts to 41 annual visits per 100 patients. CONCLUSION: Information technology based on epidemiological data may facilitate individualised determination of screening intervals for diabetic eye disease. Empirical testing suggests that this approach may be less expensive than conventional annual screening, while not compromising safety. The algorithm determines individual risk and the screening interval is individually determined based on each person's risk profile. The algorithm has potential to save on healthcare resources and patients' working hours by reducing the number of screening visits for an ever increasing number of diabetic patients in the world

    Thermoelectric Response Near the Density Driven Mott Transition

    Full text link
    We investigate the thermoelectric response of correlated electron systems near the density driven Mott transition using the dynamical mean field theory.Comment: 4 pages, 2 embedded figure

    Theory of Thermoelectric Power in High-Tc Superconductors

    Full text link
    We present a microscopic theory for the thermoelectric power (TEP) in high-Tc cuprates. Based on the general expression for the TEP, we perform the calculation of the TEP for a square lattice Hubbard model including all the vertex corrections necessary to satisfy the conservation laws. In the present study, characteristic anomalous temperature and doping dependences of the TEP in high-Tc cuprates, which have been a long-standing problem of high-Tc cuprates, are well reproduced for both hole- and electron-doped systems, except for the heavily under-doped case. According to the present analysis, the strong momentum and energy dependences of the self-energy due to the strong antiferromagnetic fluctuations play an essential role in reproducing experimental anomalies of the TEP.Comment: 5 pages, 8 figures, to appear in J. Phys. Soc. Jpn. 70 (2001) No.10. Figure 2 has been revise

    Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite sub-meter stereo images

    Get PDF
    Sub-meter resolution, stereoscopic satellite images allow for the generation of accurate and high-resolution digital elevation models (DEMs) over glaciers and ice caps. Here, repeated stereo images of Drangajökull ice cap (NW Iceland) from Pléiades and WorldView2 (WV2) are combined with in situ estimates of snow density and densification of firn and fresh snow to provide the first estimates of the glacier-wide geodetic winter mass balance obtained from satellite imagery. Statistics in snow- and ice-free areas reveal similar vertical relative accuracy (<  0.5 m) with and without ground control points (GCPs), demonstrating the capability for measuring seasonal snow accumulation. The calculated winter (14 October 2014 to 22 May 2015) mass balance of Drangajökull was 3.33 ± 0.23 m w.e. (meter water equivalent), with ∼ 60 % of the accumulation occurring by February, which is in good agreement with nearby ground observations. On average, the repeated DEMs yield 22 % less elevation change than the length of eight winter snow cores due to (1) the time difference between in situ and satellite observations, (2) firn densification and (3) elevation changes due to ice dynamics. The contributions of these three factors were of similar magnitude. This study demonstrates that seasonal geodetic mass balance can, in many areas, be estimated from sub-meter resolution satellite stereo images.This study was funded by the University of Iceland (UI) Research Fund. Pleiades images were acquired at research price thanks to the CNES ISIS program (http://www.isis-cnes.fr). The WV2 DEM was obtained through the ArcticDEM project. This work is a contribution to the Rannis grant of excellence project, ANATILS. Collaboration and travels between IES and LEGOS were funded by the Jules Verne research fund and the TOSCA program from the French Space Agency, CNES. This study used the recent lidar mapping of the glaciers in Iceland that was funded by the Icelandic Research Fund, the Landsvirkjun research fund, the Icelandic Road Administration, the Reykjavik Energy Environmental and Energy Research Fund, the Klima-og Luftgruppen (KoL) research fund of the Nordic Council of Ministers, the Vatnajokull National Park, the organization Friends of Vatnajokull, the National Land Survey of Iceland, the Icelandic Meteorological Office and the UI research fund. The ground-based mass balance measurements on Drangajokull have been jointly funded by Orkubu Vestfjarda (Westfjord Power Company), the National Energy Authority (2004-2009) and the Icelandic Meteorological Office (2009-2015).Peer Reviewe

    Trust, morality and altruism in the donation of biological material : the case of Portugal

    Get PDF
    This paper examines a number of social, ethical and cultural issues related to the application of biotechnology. The focus of the paper relies on two different cases of governing biotechnology in Portugal, referring to donation of biological material: the act of donation of eggs and sperm; and volunteers for donation of DNA material for the forensic national DNA database. We analyze the discourses on donation of biological material framing them in rhetorical devices of gift, altruism, informed consent and social responsibility. This comes blended with still unclear and emergent regulation and policies of access, retention, preservation and governing of biological material and of donors’ identification. The risks are mitigated by narratives of science and technology as social progress and providers of public good and health benefits, as well as by underlining the individual responsibility in this domain and by reinforcing the rhetoric of gene quality, based on socio-cultural and bio-genetic criteria

    Magnetotransport in the doped Mott insulator

    Full text link
    We investigate the Hall effect and the magnetoresistance of strongly correlated electron systems using the dynamical mean-field theory. We treat the low- and high-temperature limits analytically and explore some aspects of the intermediate-temperature regime numerically. We observe that a bipartite-lattice condition is responsible for the high-temperature result σxy1/T2\sigma_{xy}\sim 1/T^2 obtained by various authors, whereas the general behavior is σxy1/T\sigma_{xy}\sim 1/T, as for the longitudinal conductivity. We find that Kohler's rule is neither obeyed at high nor at intermediate temperatures.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.

    Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO3_3/SrTiO3_3 Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission

    Full text link
    LaNiO3_3 (LNO) is an intriguing member of the rare-earth nickelates in exhibiting a metal-insulator transition for a critical film thickness of about 4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such thin films also show a transition to a metallic state in superlattices with SrTiO3_3 (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to better understand this transition, we have studied a strained LNO/STO superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an (LaAlO3_3)0.3_{0.3}(Sr2_2AlTaO6_6)0.7_{0.7} substrate using soft x-ray standing-wave-excited angle-resolved photoemission (SWARPES), together with soft- and hard- x-ray photoemission measurements of core levels and densities-of-states valence spectra. The experimental results are compared with state-of-the-art density functional theory (DFT) calculations of band structures and densities of states. Using core-level rocking curves and x-ray optical modeling to assess the position of the standing wave, SWARPES measurements are carried out for various incidence angles and used to determine interface-specific changes in momentum-resolved electronic structure. We further show that the momentum-resolved behavior of the Ni 3d eg and t2g states near the Fermi level, as well as those at the bottom of the valence bands, is very similar to recently published SWARPES results for a related La0.7_{0.7}Sr0.3_{0.3}MnO3_3/SrTiO3_3 superlattice that was studied using the same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which further validates this experimental approach and our conclusions. Our conclusions are also supported in several ways by comparison to DFT calculations for the parent materials and the superlattice, including layer-resolved density-of-states results
    corecore