264 research outputs found

    Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2011 ElsevierFor functions from the Sobolev space H^s(\Omega­), 1/2 < s < 3/2 , definitions of non-unique generalized and unique canonical co-normal derivative are considered, which are related to possible extensions of a partial differential operator and its right hand side from the domain­, where they are prescribed, to the domain boundary, where they are not. Revision of the boundary value problem settings, which makes them insensitive to the generalized co-normal derivative inherent non-uniqueness are given. It is shown, that the canonical co-normal derivatives, although de¯ned on a more narrow function class than the generalized ones, are continuous extensions of the classical co-norma derivatives. Some new results about trace operator estimates and Sobolev spaces haracterizations, are also presented

    Adaptive FE-BE Coupling for Strongly Nonlinear Transmission Problems with Coulomb Friction

    Full text link
    We analyze an adaptive finite element/boundary element procedure for scalar elastoplastic interface problems involving friction, where a nonlinear uniformly monotone operator such as the p-Laplacian is coupled to the linear Laplace equation on the exterior domain. The problem is reduced to a boundary/domain variational inequality, a discretized saddle point formulation of which is then solved using the Uzawa algorithm and adaptive mesh refinements based on a gradient recovery scheme. The Galerkin approximations are shown to converge to the unique solution of the variational problem in a suitable product of L^p- and L^2-Sobolev spaces.Comment: 27 pages, 3 figure

    A priori convergence estimates for a rough Poisson-Dirichlet problem with natural vertical boundary conditions

    Get PDF
    Stents are medical devices designed to modify blood flow in aneurysm sacs, in order to prevent their rupture. Some of them can be considered as a locally periodic rough boundary. In order to approximate blood flow in arteries and vessels of the cardio-vascular system containing stents, we use multi-scale techniques to construct boundary layers and wall laws. Simplifying the flow we turn to consider a 2-dimensional Poisson problem that conserves essential features related to the rough boundary. Then, we investigate convergence of boundary layer approximations and the corresponding wall laws in the case of Neumann type boundary conditions at the inlet and outlet parts of the domain. The difficulty comes from the fact that correctors, for the boundary layers near the rough surface, may introduce error terms on the other portions of the boundary. In order to correct these spurious oscillations, we introduce a vertical boundary layer. Trough a careful study of its behavior, we prove rigorously decay estimates. We then construct complete boundary layers that respect the macroscopic boundary conditions. We also derive error estimates in terms of the roughness size epsilon either for the full boundary layer approximation and for the corresponding averaged wall law.Comment: Dedicated to Professor Giovanni Paolo Galdi 60' Birthda

    Quantum graphs with singular two-particle interactions

    Full text link
    We construct quantum models of two particles on a compact metric graph with singular two-particle interactions. The Hamiltonians are self-adjoint realisations of Laplacians acting on functions defined on pairs of edges in such a way that the interaction is provided by boundary conditions. In order to find such Hamiltonians closed and semi-bounded quadratic forms are constructed, from which the associated self-adjoint operators are extracted. We provide a general characterisation of such operators and, furthermore, produce certain classes of examples. We then consider identical particles and project to the bosonic and fermionic subspaces. Finally, we show that the operators possess purely discrete spectra and that the eigenvalues are distributed following an appropriate Weyl asymptotic law

    Epidemology of Intraspecies Bite Wounds in Dogs in the Czech Republic

    Full text link

    Traces, extensions, co-normal derivatives and solution regularity of elliptic systems with smooth and non-smooth coefficients

    Get PDF
    For functions from the Sobolev space Hs(Ω)H^s(\Omega), 1/2<s<3/2, definitions of non-unique generalised and unique canonical co-normal derivative are considered, which are related to possible extensions of a partial differential operator and its right hand side from the domain Ω\Omega, where they are prescribed, to the domain boundary, where they are not. Revision of the boundary value problem settings, which makes them insensitive to the co-normal derivative inherent non-uniqueness are given. Some new facts about trace operator estimates, Sobolev spaces characterisations, and solution regularity of PDEs with non-smooth coefficients are also presented.Comment: This is the version updated after the content was published in 2 papers, and the two parts of this version correspond to these 2 publication

    A note on maximal estimates for stochastic convolutions

    Get PDF
    In stochastic partial differential equations it is important to have pathwise regularity properties of stochastic convolutions. In this note we present a new sufficient condition for the pathwise continuity of stochastic convolutions in Banach spaces.Comment: Minor correction

    Nonexistence of self-similar singularities for the 3D incompressible Euler equations

    Full text link
    We prove that there exists no self-similar finite time blowing up solution to the 3D incompressible Euler equations. By similar method we also show nonexistence of self-similar blowing up solutions to the divergence-free transport equation in Rn\Bbb R^n. This result has direct applications to the density dependent Euler equations, the Boussinesq system, and the quasi-geostrophic equations, for which we also show nonexistence of self-similar blowing up solutions.Comment: This version refines the previous one by relaxing the condition of compact support for the vorticit

    Spectral Duality for Planar Billiards

    Full text link
    For a bounded open domain Ω\Omega with connected complement in R2{\bf R}^2 and piecewise smooth boundary, we consider the Dirichlet Laplacian ΔΩ-\Delta_\Omega on Ω\Omega and the S-matrix on the complement Ωc\Omega^c. We show that the on-shell S-matrices Sk{\bf S}_k have eigenvalues converging to 1 as kk0k\uparrow k_0 exactly when ΔΩ-\Delta_\Omega has an eigenvalue at energy k02k_0^2. This includes multiplicities, and proves a weak form of ``transparency'' at k=k0k=k_0. We also show that stronger forms of transparency, such as Sk0{\bf S}_{k_0} having an eigenvalue 1 are not expected to hold in general.Comment: 33 pages, Postscript, A

    An alternative approach to regularity for the Navier-Stokes equations in critical spaces

    Get PDF
    In this paper we present an alternative viewpoint on recent studies of regularity of solutions to the Navier-Stokes equations in critical spaces. In particular, we prove that mild solutions which remain bounded in the space H˙1/2\dot H^{1/2} do not become singular in finite time, a result which was proved in a more general setting by L. Escauriaza, G. Seregin and V. Sverak using a different approach. We use the method of "concentration-compactness" + "rigidity theorem" which was recently developed by C. Kenig and F. Merle to treat critical dispersive equations. To the authors' knowledge, this is the first instance in which this method has been applied to a parabolic equation. We remark that we have restricted our attention to a special case due only to a technical restriction, and plan to return to the general case (the L3L^3 setting) in a future publication.Comment: 41 page
    corecore