184 research outputs found

    Integrated radar and lidar analysis reveals extensive loss of remaining intact forest on Sumatra 2007–2010

    Get PDF
    Forests with high above-ground biomass (AGB), including those growing on peat swamps, have historically not been thought suitable for biomass mapping and changedetection using synthetic aperture radar (SAR). However, by integrating L-band (λ = 0.23 m) SAR from the ALOS and lidar from the ICESat Earth-Observing satellites with 56 field plots, we were able to create a forest biomass and change map for a 10.7 Mha section of eastern Sumatra that still contains high AGB peat swamp forest. Using a time series of SAR data we estimated changes in both forest area and AGB. We estimate that there was 274 ± 68 Tg AGB remaining in natural forest (≥ 20 m height) in the study area in 2007, with this stock reducing by approximately 11.4 % over the subsequent 3 years. A total of 137.4 kha of the study area was deforested between 2007 and 2010, an average rate of 3.8 % yr−1. The ability to attribute forest loss to different initial biomass values allows for far more effective monitoring and baseline modelling for avoided deforestation projects than traditional, optical-based remote sensing. Furthermore, given SAR’s ability to penetrate the smoke and cloud which normally obscure land cover change in this region, SARbased forest monitoring can be relied on to provide frequent imagery. This study demonstrates that, even at Lband, which typically saturates at medium biomass levels (ca. 150 Mg ha−1), in conjunction with lidar data, it is possible to make reliable estimates of not just the area but also the carbon emissions resulting from land use change

    Topographic roughness as a signature of the emergence of bedrock in eroding landscapes

    Get PDF
    Rock is exposed at the Earth surface when rates of erosion locally exceed rates of soil production. The thinning of soils and emergence of bedrock has implications spanning geomorphology, ecology and hydrology. Soil-mantled hillslopes are typically shaped by diffusion-like sediment transport processes that act to smooth topography through time, generating the familiar smooth, convex hillslope profiles that are common in low relief landscapes. Other processes, however, can roughen the landscape. Bedrock emergence can produce rough terrain; in this contribution we exploit the contrast between rough patches of bedrock outcrop and smooth, diffusion-dominated soil to detect bedrock outcrops. Specifically, we demonstrate that the local variability of surface normal vectors, measured from 1 m resolution airborne LiDAR data, can be used as a topographic signature to identify areas within landscapes where rock exposure is present. We then use this roughness metric to investigate the transition from soil-mantled to bedrock hillslopes as erosion rates increase in two transient landscapes, Bald Rock Basin, which drains into the Middle Fork Feather River, California, and Harrington Creek, a tributary of the Salmon River, Idaho. Rather than being abrupt, as predicted by traditional soil production models, in both cases the transition from fully soil-mantled to bedrock hillslopes is gradual and spatially heterogeneous, with rapidly eroding hillslopes supporting a patchwork of bedrock and soil that is well documented by changes in topographic roughness, highlighting the utility of this metric for testing hypotheses concerning the emergence of bedrock and adding to a growing body of evidence that indicates the persistence of partial soil mantles in steep, rapidly eroding landscapes

    A New Field Protocol for Monitoring Forest Degradation

    Get PDF
    Forest degradation leads to the gradual reduction of forest carbon stocks, function, and biodiversity following anthropogenic disturbance. Whilst tropical degradation is a widespread problem, it is currently very under-studied and its magnitude and extent are largely unknown. This is due, at least in part, to the lack of developed and tested methods for monitoring degradation. Due to the relatively subtle and ongoing changes associated with degradation, which can include the removal of small trees for fuelwood or understory clearance for agricultural production, it is very hard to detect using Earth Observation. Furthermore, degrading activities are normally spatially heterogeneous and stochastic, and therefore conventional forest inventory plots distributed across a landscape do not act as suitable indicators: at best only a small proportion of plots (often zero) will actually be degraded in a landscape undergoing active degradation. This problem is compounded because the metal tree tags used in permanent forest inventory plots likely deter tree clearance, biasing inventories toward under-reporting change. We have therefore developed a new forest plot protocol designed to monitor forest degradation. This involves a plot that can be set up quickly, so a large number can be established across a landscape, and easily remeasured, even though it does not use tree tags or other obvious markers. We present data from a demonstration plot network set up in Jalisco, Mexico, which were measured twice between 2017 and 2018. The protocol was successful, with one plot detecting degradation under our definition (losing greater than 10% AGB but remaining forest), and a further plot being deforested for Avocado (Persea americana) production. Live AGB ranged from 8.4 Mg ha–1 to 140.8 Mg ha–1 in Census 1, and from 0 Mg ha–1 to 144.2 Mg ha–1 Census 2, with four of ten plots losing AGB, and the remainder staying stable or showing slight increases. We suggest this protocol has great potential for underpinning appropriate forest plot networks for degradation monitoring, potentially in combination with Earth Observation analysis, but also in isolation

    Pervasive Rise of Small-scale Deforestation in Amazonia

    Get PDF
    Understanding forest loss patterns in Amazonia, the Earth’s largest rainforest region, is critical for effective forest conservation and management. Following the most detailed analysis to date, spanning the entire Amazon and extending over a 14-year period (2001–2014), we reveal significant shifts in deforestation dynamics of Amazonian forests. Firstly, hotspots of Amazonian forest loss are moving away from the southern Brazilian Amazon to Peru and Bolivia. Secondly, while the number of new large forest clearings (>50 ha) has declined significantly over time (46%), the number of new small clearings (<1 ha) increased by 34% between 2001–2007 and 2008–2014. Thirdly, we find that small-scale low-density forest loss expanded markedly in geographical extent during 2008–2014. This shift presents an important and alarming new challenge for forest conservation, despite reductions in overall deforestation rates

    A novel application of satellite radar data: measuring carbon sequestration and detecting degradation in a community forestry project in Mozambique

    Get PDF
    Background: It is essential that systems for measuring changes in carbon stocks for Reducing Emissions from Deforestation and Forest Degradation (REDD) projects are accurate, reliable and low cost. Widely used systems involving classifying optical satell

    On Kinks and Bound States in the Gross-Neveu Model

    Full text link
    We investigate static space dependent \sigx=\lag\bar\psi\psi\rag saddle point configurations in the two dimensional Gross-Neveu model in the large N limit. We solve the saddle point condition for \sigx explicitly by employing supersymmetric quantum mechanics and using simple properties of the diagonal resolvent of one dimensional Schr\"odinger operators rather than inverse scattering techniques. The resulting solutions in the sector of unbroken supersymmetry are the Callan-Coleman-Gross-Zee kink configurations. We thus provide a direct and clean construction of these kinks. In the sector of broken supersymmetry we derive the DHN saddle point configurations. Our method of finding such non-trivial static configurations may be applied also in other two dimensional field theories.Comment: Revised version. A new section added with derivation of the DHN static configurations in the sector of broken supersymmetry. Some references added as well. 25 pp, latex, e-mail [email protected]

    Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum

    Get PDF
    We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques.Comment: 5 pages with 4 figures. Published as Phys. Rev. Letters 97, 153401 (2006), in slightly different for

    25 years of satellite InSAR monitoring of ground instability and coastal geohazards in the archaeological site of Capo Colonna, Italy

    Get PDF
    For centuries the promontory of Capo Colonna in Calabria region, southern Italy, experienced land subsidence and coastline retreat to an extent that the archaeological ruins of the ancient Greek sanctuary are currently under threat of cliff failure, toppling and irreversible loss. Gas extraction in nearby wells is a further anthropogenic element to account for at the regional scale. Exploiting an unprecedented satellite Synthetic Aperture Radar (SAR) time series including ERS-1/2, ENVISAT, TerraSAR-X, COSMO-SkyMed and Sentinel-1A data stacks acquired between 1992 and 2016, this paper presents the first and most complete Interferometric SAR (InSAR) baseline assessment of land subsidence and coastal processes affecting Capo Colonna. We analyse the regional displacement trends, the correlation between vertical displacements with gas extraction volumes, the impact on stability of the archaeological heritage, and the coastal geohazard susceptibility. In the last 25 years, the land has subsided uninterruptedly, with highest annual line-of-sight deformation rates ranging between -15 and -20 mm/year in 2011-2014. The installation of 40 pairs of corner reflectors along the northern coastline and within the archaeological park resulted in an improved imaging capability and higher density of measurement points. This proved to be beneficial for the ground stability assessment of recent archaeological excavations, in an area where field surveying in November 2015 highlighted new events of cliff failure. The conceptual model developed suggests that combining InSAR results, geomorphological assessments and inventorying of wave-storms will contribute to unveil the complexity of coastal geohazards in Capo Colonna. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    ATHENA -- First Production of Cold Antihydrogen and Beyond

    Full text link
    Atomic systems of antiparticles are the laboratories of choice for tests of CPT symmetry with antimatter. The ATHENA experiment was the first to report the production of copious amounts of cold antihydrogen in 2002. This article reviews some of the insights that have since been gained concerning the antihydrogen production process as well as the external and internal properties of the produced anti-atoms. Furthermore, the implications of those results on future prospects of symmetry tests with antimatter are discussed.Comment: Proc. of the Third Meeting on CPT and Lorentz Symmetry, Bloomington (Indiana), USA, August 2004, edited by V. A. Kostelecky (World Scientific, Singapore). 10 pages, 5 figures, 1 table. Author affiliations cor
    • …
    corecore