Evidence for the Production of S low A ntiprotonic H ydrogen in V acuum

 M . D oser, ${ }^{10}$ A. Fontana, ${ }^{6,11}$ R.Funakoshi, ${ }^{12}$ P. Genova, ${ }^{6,11}$ R.S. Hayano, ${ }^{12}$ L. V. J rgensen, ${ }^{9}$ A. K ellenbauer, ${ }^{10} \mathrm{~V}$. Lagom arsino,,$^{3,7} \mathrm{R} \cdot$ Landua, ${ }^{10} \mathrm{E} . \operatorname{LodiR}$ izzini, ${ }^{1,2} \mathrm{M} \cdot \mathrm{M}$ acr ${ }^{3}$, N.M adsen, ${ }^{9}$ G.M anuzio, ${ }^{3,7}$ D.M itchard, ${ }^{9}$ P.M ontagna, ${ }^{6,11} \mathrm{~L} . \mathrm{G}$. P osada $^{12}{ }^{12}$ H . Pruys, ${ }^{4} \mathrm{C} \cdot \mathrm{Regenfus},{ }^{4}$ A. R otondi, ${ }^{6,11}$ G. Testera, ${ }^{3}$ D P.Van der W erf, ${ }^{9}$ A. Variola, ${ }^{3}$ L. Venturelli, ${ }^{1,2}$ and Y. Yam azaki i^{13} (ATHENA Collaboration)
${ }^{1}$ D ipartim ento di Chim ica e Fisica per l’Ingegneria e per iM ateriali, U niversita di B rescia, 25123 B rescia, Italy
${ }^{2}$ Istituto N azionale di F isica N ucleare, G ruppo C ollegato di B rescia, 25123 B rescia, Italy
${ }^{3}$ Istituto N azionale di F isica N ucleare, Sezione di G enova, 16146 G enova Italy
${ }^{4}$ Physik-Institut, Zurich University, C H -8057 Zurich, Sw itzerland
${ }^{5}$ D ipartim ento di Ingegneria M eccanica, U niversita di B rescia, 25123 B rescia, Italy
${ }^{6}$ Istituto N azionale di F isica N ucleare, U niversita di Pavia, 27100 P avia, Italy
${ }^{7}$ D ipartim ento di F isica, U niversita di G enova, 16146 G enova, Italy
${ }^{8}$ Instituto de Fisica, U nivesidade Federal do R io de Janeiro, R io de Janeiro 21945-970
${ }^{9}$ D epartm ent of Physics, U niversity of W ales Swansea, Swansea SA 2 8PP, UK
${ }^{10}$ EP D ivision, CERN, CH-1211 G eneva 23, Sw itzerland
${ }^{11}$ D ipartim ento di F isica N ucleare e Teorica, U niversita di P avia, 27100, Pavia, Italy
${ }^{12}$ D epartm ent of Physics, U niversity of Tokyo, Tokyo 113-0033, Japan
${ }^{13}$ A tom ic Physics Laboratory, R IK EN, Saitam a 351-0198, Japan

(D ated: June 2, 2013)

Abstract

W e present evidence show ing how antiprotonic hydrogen, the quasi-stable antiproton (p)-proton bound system, has been synthesized follow ing the interaction of antiprotons w ith the m olecular ion H_{2}^{+}in a nested Penning trap environm ent. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiproton ic hydrogen production w ith subeV kinetic energies in states around $\mathrm{n}=70$, and w ith low angular m om enta. The slow antiproton ic hydrogen m ay be studied using laser spectroscopic techniques.

PACS num bers: $36.10 \mathrm{k}, 34.80 \mathrm{Lx}, 52.20 \mathrm{Hv}$

Studies of the properties of the two-body hydrogenic bound states of the stable leptons and baryons have produced som e of the m ost precise m easurem ents of physical quantities and provided pow erful tests of our understanding of the law s of nature. Interest in this area is still strong, follow ing the recent production of antihydrogen, H, at low energies [1, 2] . A ccurate com parisons of the transitions in hydrogen and antihydrogen are eagerly aw aited as a stringent test of CPT sym m etry.

A ntiprotonic hydrogen (pp) is also of interest. Its level structure is sim ilar to that of hydrogen, but with m uch larger binding energies. Precision m easurem ents of its spectroscopic properties m ay allow determ ination of the so-called antiprotonic R ydberg constant and/or the antiproton/electron m ass ratio.

A lthough pp has been studied extensively in the past, this has exclusively been achieved by stopping antiprotons in liquid or gaseous targets for X -ray spectroscopy of inner shell cascades, or for the production of new light m esons and baryons (see e.g. [3, 4]). H ere we report a radically new m ethod of pp production resulting in em ission alm ost at rest in vacuum. This has been achieved using a chem icalreaction betw een antiprotons and m olecular hydrogen ions (H_{2}^{+}) in the ATHENA Penning trap apparatus [1,5]. This advance has opened the way for laser spectroscopic studies of pp, or other antiprotonic
system s form ed by p interactionsw ith HD^{+}or D_{2}^{+}, ak in to those successfully deployed in the study of antiprotonic helium (see e.g. [6, 7]).

The experim ents w ere m ade possible by the availability of a high-quality low energy p beam delivered by the CERN Antiproton Decelerator to the ATHENA H apparatus. The latter contained a multi-electrode system of cylindricalP enning traps, 2.5 cm in diam eter and

90 cm in length im m ersed in an axialmagnetic eld of 3 T . The residual pressure of $10{ }^{12} \mathrm{~T}$ orr, in the 15 K cryogenic environm ent of the trap, was due to hydrogen and helium gases. T he central region contained the m ixing trap: a nested Penning trap, approxim ately 10 am long, that allowed positrons, e^{+}, and antiprotons to be con ned sim ultaneously. For H production the mixing trap contained a spheroidal cloud of $3: 5 \quad 10^{7} \mathrm{e}^{+}$. A round 10^{4} antiprotons w ere in jected into this plasm a, w ith the resulting p annihilations m onitored for $60 s$ by position sensitive detectors [5, 8]. These registered the passage of the charged pions, to localize annihilation vertices which were due, not only to H form ation follow ed by annihilation on the electrode surface [1, 9], but also p annihilation follow ing transport to the electrode walls [10], and annihilation follow ing interactions w ith residual gas atom s or ions present in the trap. It was show n in [1, [] that the vertex data were predom inantly H anni-

Figure 1: r z scatter plot and radial densities $\frac{1}{r} \frac{d N}{d r}$ of the annihilation vertices for: (a) hot m ixing; (b) cold m ixing. The dashed black line indicates the position of the trap wall; the red sem i-ellipse show s the section of the e^{+}plasm a. The green radial densities are for the corresponding central z-region events (inside the green lines) whilst the data in blue are for the 2 lateral z-regions, norm alized for $r>1: 25 \mathrm{~cm}$.
hilations during so-called \cold mixing" (CM), when the e^{+}cloud was held at the trap am bient of 15 K . In contrast for \backslash hot m ixing" ($H M$), when the e^{+}were heated to a tem perature, T_{e}, of several thousand K (here 8000 K) [11, [12], H form ation was suppressed and the p annihilations were m ainly a result of collisions w ith trapped positive ions. It is this e ect (which is also present for CM) that is addressed here.

Fig 1 show sr z scatter plots for annihilation vertices taken under HM and CM conditions. Here the radial positions, r, (i.e. the distance from the trap axis) of the events are plotted versus their axial coordinates, z. A lso show n are the attendant radialdensity distributions
$\frac{1}{r} \frac{d N}{d r}$. The distributions are broadened by the uncertainties in the vertex determ ination (around 1.8 mm in the z-direction and 3.5 mm in the transverse dim ensions) caused mainly by the inability of the ATHENA detector to reconstruct the curved trajectories of the pions in the 3 T m agnetic eld. The present HM results are for the highest T_{e} achieved by ATHENA.

There are striking di erences betw een the twor z plots. Besides the H annihilations on the trap wall centred around $r=1: 25 \mathrm{~cm}$ (CM only), there are events 10 calized at sm aller radii which dom inate in HM (Fig 1a), but which are also evident in CM (F ig 10). Exam in-

Figure 2: Experim ental radial distribution of p annihilation vertices (black histogram) for HM ($1.5 \mathrm{~cm}<\mathrm{z}<$ $1: 5 \mathrm{~cm}$) w ith a M onte Carlo sim ulation ($\mathrm{T}_{\mathrm{e}}=8000 \mathrm{~K}$, $\mathrm{V}_{\text {th }}$ $=5600 \mathrm{~m} \mathrm{~s}^{1}$, generation on the surface of a spheroid w ith $\mathrm{z}_{\mathrm{p}}=16 \mathrm{~mm}$ and $\mathrm{r}_{\mathrm{p}}=1 \mathrm{~mm}$ rotating w ith a frequency of 300 kHz , i.e. $\mathrm{V}_{\operatorname{tang}}=2000 \mathrm{~m} \mathrm{~s}^{1}$); see text for details. Results of sim ulations w ith di erent m ean lifetim es are show n : green, $=0: 8 \mathrm{~s}\left(\begin{array}{c}2 \\ \text { red }\end{array}=2: 78\right)$; red, $=1: 1 \mathrm{~s}(\underset{\text { red }}{2}=1: 48)$; blue, $=1: 4 \mathrm{~s}(\underset{\text { red }}{2}=2: 14)$.
ing F ig 1 l , the radial density distributions for CM at sm all radii ($r<0: 5 \mathrm{~cm}$) behave quite di erently betw een the central ($\dot{k} j<0: 5 \mathrm{~cm}$) and its adjacent regions ($0: 5 \mathrm{~cm}<\dot{\mathrm{k} j} \mathrm{<}<1: 5 \mathrm{~cm}$). M oreover, the shape of the distribution for the events in the central region resem bles that for HM .

In F ig 2 and F igs $3 a$, b the radial $\frac{d N}{d r}$ and axial $\frac{d N}{d z}$ annihilation distributions are plotted for the HM case. Fig 3 3 c show s the axialdistribution for $C M$ for events w ith $r<0: 5 \mathrm{~cm}$ being notably narrow er than the HM case in F ig 3 B .

In order to determ ine the characteristics of the nearaxis events the possibility that they are due to H has been investigated. In ATHENA, H was detected by the coincidence in space and in time (w ithin 5 s) of p and e^{+}annihilations. This w as achieved for events having a charged pion vertex accom pained by a pair of 511 keV photons w ith the angle betw een them denoted [1, [9]. Exam ination of the distributions of cos indicates that the trap centre events are not due to H, except for a sm all fraction in CM where the long tails in Fig 3c are due to poor reconstructions of H annihilations on the trap wall. NoH annihilations occur for HM .M oreover, cos distributions for CM in the three z-regions in Fig.1] suggest that the fraction of non H anninilations on the wall in the central z-region is insigni cant.

The distributions in F igs $11 \sqrt{3}$ also show that in $H M$ the annihilation distribution is extended and has a conspicuous fraction out to the trap wall. W e interpret these features as evidence for the production of slow antiprotonic hydrogen as follow s:
i) the lim ited axial range of the vertices, when com pared to the total length of the nested trap, indicates that p do not annihilate in-ight on residual gas which is present throughout;

Figure 3: Experim ental axial distributions: hot m ixing for events near the trap wall (a), and near the trap axis (b) and for cold m ixing for events near the trap $a x$ is (c). In (a, b): the red line is the sim ulation w ith the param eters of F ig 2 and w ith lifetime $=1: 1 \mathrm{~s}$. In (c) the red line is the sim ulation w ith the param eters of F ig 4 .
ii) the events cannot correspond to in- ight annihilation on trapped positive ions since the latter are only present near the e^{+}cloud whilst the annihilation events are radially di use;
iii) positive ions can capture p in the central part of the recom bination trap. In the case of $\mathrm{pH} \mathrm{e}^{+}$the residual electron would be rapidly ejected, in the m a jority of cases in less than 10 ns [13], leaving a charged system that would annihilate very near its point of form ation. Since this is inconsistent w ith our observations, p capture by helium ions can be excluded.

Further inform ation on the inferred antiprotonic system form ed from capture by a positive ion can be obtained by exploiting the di erent charged pion m ultiplicities expected for p annihilation on a proton or neutron. Tab 团 show s the ratios, R_{23}, of the num ber of the reconstructed annihilation vertices having two charged pion tracks to those w ith three tracks for di erent data sam ples.

D ata set	R atio R_{23} on wall	R atio R_{23} at centre	
C old m ixing	1.35	0.01	1.22
0.04			
H ot m ixing	1.38	0.10	1.17
0.04			
antiprotons on y	1.40	0.03	
M onte C arlo pp	$1: 19$	$0: 01$	$1: 19$

Table I: Experim entaland M onte C arlo results for the num ber of charged pion tracks due to p annihilations.

From Tab . , the $_{23}$ values for annihilation on the trap wall for all the sam ples agree, with in uncertainties, but di er from those for the trap centre by 4 standard deviations. This is not due to geom etry, since the M onte C arlo sim ulations assum ing the pp system give the sam e result both for the \w all" and \centre" annihilations. It is likely that the trap centre events are due to pp annihilation, since the pp M onte C arlo result agrees well w ith the experim ent. This, togetherw ith the three constraints described above, suggest that pp is responsible for the observed annihilation distributions. T hus, the data can be further analysed to search for consistency w ith the conditions pertaining to the production region at the two di erent positron tem peratures, the pp lifetim e and nally the energetics of the form ation reaction.

First, pp is not con ned by the electrom agnetic elds of the traps and if form ed in a m etastable state 13,14 , 15, 16] it can decay in ight far from its point of form ation, perhaps even on the trap wall. The convolution of the pp lifetim es and velocities govems the observed annihilation distributions. M oreover, Figs. 3b and c clearly indicate that the tem perature of the e^{+}cloud in uences the spatial origin of the pp.

W e have attem pted to generate the initial position of the pp using a M onte C arlo sim ulation which takes into account the radius, r_{p}, and the axial half-length, z_{p}, of the e^{+}spheroid, both deduced by m eans of the nondestructive technique described in [11, 12]. Param eters obtained using this technique allow the plasm a rotation frequency to be extracted.

In this sim ulation, the spheroid was characterized by $r_{p}=1 \mathrm{~mm}$ and $z_{p}=16 \mathrm{~mm}$. For the $C M$ case the $p p$ was generated in a region w ith a xed radialposition at $r=r_{p}=1 \mathrm{~mm}$ and w ith a G aussian distribution along the axis centred at the symmetry plane of the plasm a w ith $=2: 5 \mathrm{~mm}$. This gave the best t to the data. For the HM case, how ever, pp wasgenerated w ith $=10 \mathrm{~mm}$, though lim ited to the length of e^{+}plasm a. It is notable that, for the HM case, the sim ulated annihilation distributions were not strongly dependent upon the assum ed starting conditions, taking into account our experim ental resolution.

The velocity of the pp was generated from the sum of a them alM axw ellian distribution, $\mathrm{v}_{\text {th }}$, and the tangentialvelocity, $\mathrm{v}_{\operatorname{tang}}$, induced by the E B plasm a rotation as $V_{\operatorname{tang}}=E \quad B=B$ J. Follow ing this prescription, the m ean radialkinetic energy of the pp is about 40 meV for CM (15 K), and dom inated by the e ect of the plasm a rotation, and about 700 meV in the HM case (8000 K), and dom inated by the plasm a tem perature. A n exponential decay law for the pp lifetim e distribution was assum ed such that its m ean lifetim ewas determ ined by tting the sim ulations to the observed data.

The sim ulated radial and axial annihilation distributions are plotted w ith the HM data in Fig 2and Fig $3, a, b$. T he agreem ent is good and the best t was obtained w ith

Figure 4: Experim ental radial distribution for cold m ixing 2003 (a) and cold m ixing 2002 (b), obtained by subtracting the H contribution (see text). The red lines are the sim ulation results. In (a): $T=15 \mathrm{~K}, V_{\text {th }}=250 \mathrm{~m} \mathrm{~s}^{1}$, generation from a spheroid w ith $z_{p}=16 \mathrm{~mm}$ and $r_{p}=1 \mathrm{~mm}$ rotating w ith a frequency of 300 kHz , i.e. $\mathrm{V}_{\operatorname{tang}}=2000 \mathrm{~m} \mathrm{~s}^{1} ; \mathrm{m}$ ean lifetim e is $=1.1 \mathrm{~s}$. In (b): sam e param eters as in (a) except $r_{p}=2: 5 \mathrm{~mm}$ and the rotation frequency is 80 kHz , i.e. $v_{\operatorname{tang}}=1300 \mathrm{~m} \mathrm{~s}^{1}$. In (b) the green line corresponding to the param eters of the red line in (a) is show n for com parison.
a m ean lifetim e of (1.1 0.1) s. The sensitivity of the t to this lifetim e is illustrated in F ig 2 by the clear discord betw een the experim entaldata and the sim ulations when lifetim es of 0.8 s and 1.4 swere used in the latter. T he ts im ply that about 25\% of the antiprotonic hydrogen atom s annihilate on the trap wall in HM.

To isolate the radial distribution of the non H annihilations in the central z-region for the CM sam ple the nom alized distribution, as evaluated from Fig. 10 for the two lateral z-regions, was subtracted from the central one. Since, as noted above, non H annihilations on the wall in the central z-region are insigni cant for $C M$, the radialdistributions were norm alised for $r>1: 25 \mathrm{~cm}$.

The results are plotted in Fig. 4a. The M onte C arlo sim ulated events, assum ing the sam e lifetim e extracted from ts to the HM data, also show good agreem ent for $C M$. In this case, the sim ulation indicates that $<0: 5 \%$ of the pp reaches the trap surface.

A further test ofourm odelhas been obtained by exam ining a sam ple ofCM data acquired by ATHENA in 2002 w ith a e^{+}plasm a radius of 2.5 mm (and hence a di erent rotation frequency). Fig.4b show s the radial vertex distribution of this sam ple together w ith M onte C arlo sim ulations for tw o values of the radius of the pp source. T he sim ulated events for the 2.5 mm source are in $\mathrm{m} u \mathrm{ch}^{2}$ better agreem ent w ith the experim entaldata than those for 1.0 mm . This is illustrative of the sensitivity of the m odel to the spatial origin of the pp for CM sam ples.

A possible explanation of the experim entaldi erences betw een the pp distributions in $C M$ and $H M$ lies in the nature of the therm al equilibrium state of the com bination of a e^{+}plasma with an adm ixture of ions. The physics of the radial separation of the di erent species in tw o-com ponent plasm as has been given elsew here [17, 18]
and has been experim entally observed for a mixture of positrons and ${ }^{9} \mathrm{Be}^{+}$in [19]. For our experim ental conditions, assum ing them al equilibrium, the centrifugal potentialbarrier is of the order of 10 m eV . Thus, for CM at 15 K , the them alenergy of the ionsm eans that they w ill be partially separated from the e^{+}and con ned near the equatorial region of the plasm a. H ow ever, at a e^{+}tem perature of 8000 K the barrier is negligible and the ions w ill be present throughout the plasm a.

W e note here that the experim entaldata cannot be reproduced by sim ulation if it is assum ed that the pp gains a recoil energy of the order of 1 eV or higher. Thus, it is contended that pp is being produced in a recoil-free collision of an antiproton w ith a positive ion such that its velocity is determ ined predom inantly by the them al and plasm a environm ent. This insight, together w ith the constraints i)-iii) noted above, suggest that the only possible collision partner for the p is the m olecular ion, H_{2}^{+}. T hus, the inferred pp production m echanism is,

$$
\begin{equation*}
\mathrm{p}+\mathrm{H}_{2}^{+}!\mathrm{pp}(\mathrm{n} ; \mathrm{l})+\mathrm{H}: \tag{1}
\end{equation*}
$$

H ence we believe that AT H ENA has observed around 100 antiprotonic hydrogen annihilations every 60 sp injection cycle for the CM and HM conditions. In an experim ent in which the num ber of ions present in our nested w ell w as counted by m easuring the charge collected follow ing em ptying of the trap it has been deduced that the trap contained H_{2}^{+}ions. These probably arose as a result of the positron loading procedure [20], in which the positrons could collide w ith H_{2} residual gas as they w ere slow ly squeezed into the m ixing region. Ions m ay also be produced and trapped during p loading (see also [21]) and we estim ate that around $10^{4} \quad 10^{5}$ ions w ere present under typicalam bient conditions. It is straightforw ard to show that this ion density, together w ith the observed pp production rate and the p speeds used in the sim ulation are consistent w ith calculated cross sections for reaction (1) [16].

A greem ent w ith [16] does not, unfortunately, extend to the m ost likely principal quantum num bers of the antiprotonic hydrogen atom s produced in the reaction. T he calculation [16] nds production peaked around $n=34$, in the presence of substantial pp recoil. The latter is contrary to observation. Sim ple kinem atics relating to near zero-energy $\mathrm{p} \quad \mathrm{H}_{2}^{+}$collisions suggest that $\mathrm{n}=68$ should dom inate, w ith the liberated hydrogen atom in its ground state. In this case the lifetim e of 1.1 s extracted from the sim ulations im plies that production in low angular m om entum states $(1<10)$ is favoured, since the radiative lifetim e to an $l=0$ state (which is follow ed by prom pt annihilation) w eighted by the statistical (2l+1) distribution is around 15 s for $\mathrm{n}=68$. The dom inance of low l is intuitive for such a slow collision in which the m olecular ion will be severely polarised by the incom ing p , resulting in an alm ost collinear collision system .

In conclusion we have presented evidence for the production of antiprotonic hydrogen, in vacuum, w ith subeV kinetic energies and in a m etastable state. G iven the capability of accum ulating $10^{8} \mathrm{H}_{2}^{+}$ions in tens of seconds and storing $5 \quad 10^{6}$ antiprotons in som em inutes [22, 23], our result opens up the possibility of perform ing detailed spectroscopic m easurem ents on antiprotonic hydrogen as a probe of fundam ental constants and sym m etries.

This work was supported by CNPq, FAPERJ, CCMN/UFRJ (Brazil), $\mathbb{N N F N ~ (I t a l y) , ~ M E X T ~ (J a p a n) , ~}$ SNF (Sw itzerland), SN F (D enm ark) and EPSRC (UK).
[1] M .Am oretti et al., N ature 419, 456 (2002).
[2] G . G abrielse et al, Phys. R ev. Lett. 89, 213401 (2002).
[3] C . J. B atty, R ept. P rog. Phys. 52, 1165 (1989).
[4] L. M ontanet, Nucl. Phys. A 692, 383c (2001).
[5] M . Am oretti et al., Nucl . Instrum . M eth. A 518, 679 (2004).
[6] T. Yam azakietal, Phys. Rep. 366,183 (2002).
[7] M . H ori et al., Phys. R ev. Lett. 96,243401 (2006).
[8] C . R egenfus, N ucl. Instrum . M eth. A 501, 65 (2003).
[9] M . Am oretti et al., Phys. Lett. B 578, 23 (2004).
[10] M . C . Fu j̈w ara etal., Phys.R ev.Lett. 92 , 065005 (2004).
[11] M . A m orettiet al., Phys. R ev. Lett. 91, 055001 (2003).
[12] M . A m oretti et al., Phys. P lasm as 10 , 3056 (2003).
[13] V. I. K orobov Phys. R ev. A 67, 062501 (2003).
[14] G. R eifenrother \& E. K lem pt Nucl. Phys. A 503, 885 (1989).
[15] J. S. C ohen, R ept. P rog. Phys. 67,1769 (2004).
[16] K. Sakim oto, J. Phys. B A t. M ol. O pt. Phys. 37, 2255 (2004).
[17] D. H . E. D ubin \& T .M. O N eil, R ev.M od. Phys. 71, 87 (1999).
[18] T . M . O N eil, P hys. F luids 24,1447 (1981).
[19] B . M . Jelenkovic, A. S. N ew bury, J. J. B ollinger, W . M . Itano \& T.B.M itchell, Phys. Rev. A 67063406 (2003).
[20] L.V.J rgensen etal. Phys. Rev.Lett. 95025002 (2005).
[21] G. G abrielse et al., Phys. Lett. B 455, 311 (1999).
[22] N . K uroda et al., Phys. R ev. Lett. 94, 023401 (2005).
[23] N . O shim a et al, Phys. R ev. Lett. 93, 195001 (2004).

