340 research outputs found
Implementation of Asymmetric Yielding in Case Specific Finite Element Models improves the Prediction of Femoral Fracture Risk
Item does not contain fulltextAlthough asymmetric yielding in bone is widely shown in experimental studies, previous case-specific non-linear finite element (FE) studies have mainly adopted material behaviour using the Von Mises yield criterion (VMYC), assuming equal bone strength in tension and compression. In this study, it was verified that asymmetric yielding in FE models can be captured using the Drucker-Prager yield criterion (DPYC), and can provide better results than simulations using the VMYC. A sensitivity analysis on parameters defining the DPYC (i.e. the degree of yield asymmetry and the yield stress settings) was performed, focusing on the effect on bone failure. In this study, the implementation of a larger degree of yield asymmetry improved the prediction of the fracture location; variations in the yield stress mainly affected the predicted failure force. We conclude that the implementation of asymmetric yielding in case-specific FE models improves the prediction of femoral bone strength
Switching Casimir forces with Phase Change Materials
We demonstrate here a controllable variation in the Casimir force. Changes in
the force of up to 20% at separations of ~100 nm between Au and AgInSbTe (AIST)
surfaces were achieved upon crystallization of an amorphous sample of AIST.
This material is well known for its structural transformation, which produces a
significant change in the optical properties and is exploited in optical data
storage systems. The finding paves the way to the control of forces in
nanosystems, such as micro- or nanoswitches by stimulating the phase change
transition via localized heat sources.Comment: 7 pages, 3 figures The AFM images for the inset in Fig.2 were
replaced with new ones as obtained with tips having high aspect rati
Migraine and vascular disease biomarkers: A population-based case-control study.
Background The underpinnings of the migraine-stroke association remain uncertain, but endothelial activation is a potential mechanism. We evaluated the association of migraine and vascular disease biomarkers in a community-based population. Methods Participants (300 women, 117 men) were recruited as a part of the Dutch CAMERA 1 (Cerebral Abnormalities in Migraine, an Epidemiologic Risk Analysis) study. Participants were aged 30-60 (mean 48) years, 155 migraine had with aura (MA), 128 migraine without aura (MO), and 134 were controls with no severe headaches. Plasma concentrations of fibrinogen, Factor II, D-dimer, high sensitivity C-reactive protein (hs-CRP), and von Willebrand factor antigen were compared between groups, also stratifying by sex. Results Fibrinogen and hs-CRP were elevated in migraineurs compared to controls. In logistic regression analyses, MO and MA had increased likelihood of elevated fibrinogen, and MA had increased likelihood of elevated Factor II and hs-CRP. Fibrinogen and Factor II were associated with MA in women but not men. In the migraine subgroup, the total number of years of aura, but not headache, predicted elevated hs-CRP, and the average number of aura, but not headache, attacks predicted all biomarkers but Factor II. Conclusions Elevated vascular biomarkers were associated with migraine, particularly MA, as well as with years of aura and number of aura attacks
Inter-site Coulomb interaction and Heisenberg exchange
Based on exact diagonalization results for small clusters we discuss the
effect of inter-site Coulomb repulsion in Mott-Hubbard or charge transfer
insulators. Whereas the exchange constant J for direct exchange is
substantially enhanced by inter-site Coulomb interaction, that for
superexchange is suppressed. The enhancement of J in the single-band models
holds up to the critical value for the charge density wave (CDW) instability,
thus opening the way for large values of J. Single-band Hubbard models with
sufficiently strong inter-site repulsion to be near a CDW instability thus may
provide `physical' realizations of t-J like models with the `unphysical'
parameter ratio J/t=1.Comment: Revtex file, 4 PRB pages, with 5 embedded ps-files. To appear in PRB,
rapid communications. Hardcopies of figures or the entire manuscript may also
be obtained by e-mail request to: [email protected]
Adsorption of colloidal particles in the presence of external field
We present a new class of sequential adsorption models in which the adsorbing
particles reach the surface following an inclined direction (shadow models).
Capillary electrophoresis, adsorption in the presence of a shear or on an
inclined substrate are physical manifestations of these models. Numerical
simulations are carried out to show how the new adsorption mechanisms are
responsible for the formation of more ordered adsorbed layers and have
important implications in the kinetics, in particular modifying the jamming
limit.Comment: LaTex file, 3 figures available upon request, to appear in
Phys.Rev.Let
The spectral weight of the Hubbard model through cluster perturbation theory
We calculate the spectral weight of the one- and two-dimensional Hubbard
models, by performing exact diagonalizations of finite clusters and treating
inter-cluster hopping with perturbation theory. Even with relatively modest
clusters (e.g. 12 sites), the spectra thus obtained give an accurate
description of the exact results. Thus, spin-charge separation (i.e. an
extended spectral weight bounded by singularities) is clearly recognized in the
one-dimensional Hubbard model, and so is extended spectral weight in the
two-dimensional Hubbard model.Comment: 4 pages, 5 figure
Ectopic Fat and Insulin Resistance: Pathophysiology and Effect of Diet and Lifestyle Interventions
The storage of triglyceride (TG) droplets in nonadipose tissues is called ectopic fat storage. Ectopic fat is associated with insulin resistance and type 2 diabetes mellitus (T2DM). Not the triglycerides per se but the accumulation of intermediates of lipid metabolism in organs, such as the liver, skeletal muscle, and heart seem to disrupt metabolic processes and impair organ function. We describe the mechanisms of ectopic fat depositions in the liver, skeletal muscle, and in and around the heart and the consequences for each organs function. In addition, we systematically reviewed the literature for the effects of diet-induced weight loss and exercise on ectopic fat depositions
- …